
Nonlinear pseudospin dynamics of

exciton-polaritons in a semiconductor

microcavity

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der

Physikalisch-Astronomischen Fakultät

der Friedrich-Schiller-Universität Jena

von Dipl.-Phys. Friedemann Albrecht Werner

geboren am 02.06.1985 in Pirna



Gutachter

1. Prof. Dr. Falk Lederer

Institut für Festkörpertheorie und theoretische Optik

Friedrich-Schiller-Universität Jena

2. Prof. Dr. Kęstutis Staliūnas

ICREA Research Professor

Universitat Politècnica de Catalunya (UPC)

3. Prof. Dr. Thorsten Ackemann

Department of Physics

University of Strathclyde

Tag der Disputation: 24.02.2016



Contents

Table of contents 1

1 Introduction 5

1.1 Aim of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Strong Coupling 11

2.1 Optics in a semiconductor microcavity . . . . . . . . . . . . . . . . . . . 12

2.1.1 Fabry-Pérot microcavities . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Excitons in a semiconductor quantum well . . . . . . . . . . . . . 14

2.1.3 Semiclassical description of exciton-photon coupling . . . . . . . . 15

2.1.4 Quantum description of exciton-photon coupling . . . . . . . . . . 17

2.2 Equations of motion of exciton-polaritons . . . . . . . . . . . . . . . . . . 18

2.2.1 Exciton-polariton Hamiltonian . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Heisenberg equations of motion . . . . . . . . . . . . . . . . . . . 19

2.3 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 20

3 Spin and polarization effects 23

3.1 Spin effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Exciton spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Exciton-exciton interaction Hamiltonian . . . . . . . . . . . . . . 24

3.1.3 Numerical value of the cross-phase modulation parameter α . . . 25

3.2 TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 28

4 Solutions of the equations of motion 29

4.1 Typology of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Analytical and numerical techniques . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Perturbation schemes for HSs . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Split-step Fourier method for the full PDEs . . . . . . . . . . . . 31

4.2.3 Newton iterative method for stationary solutions of the PDEs . . 32

1



Contents

4.3 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 32

5 Properties of homogeneous solutions 35

5.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Linear dispersion relation and Hopfield coefficients . . . . . . . . . 36

5.1.2 TE-TM splitting of the linear dispersion relation . . . . . . . . . . 38

5.2 Multistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Modulation instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Perturbation scheme for the spin-dependent case without TE-TM

splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Growth rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.3 Analysis at the critical intensity . . . . . . . . . . . . . . . . . . . 47

5.3.4 Perturbation theory for the spin-dependent case with TE-TM splitting 49

5.4 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 50

6 Dynamics of extended structures 51

6.1 Scalar polariton patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Pattern formation near the bottom of the lower polariton branch . 53

6.1.2 Pattern formation beyond the parabolic approximation . . . . . . 55

6.1.3 Pattern formation above the excitonic resonance . . . . . . . . . . 59

6.2 Pseudospin dynamics of polariton patterns . . . . . . . . . . . . . . . . . 62

6.2.1 Symmetric intensity patterns for positive cross-phase modulation

parameter α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.2 Asymmetric pseudospin patterns patterns for negative cross-phase

modulation parameter α . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.3 Formation of domain walls near the bottom of the lower polariton

branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Moving hexagonal patterns due to TE-TM splitting . . . . . . . . . . . . 69

6.4 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 74

7 Dynamics of dark polariton solitons 77

7.1 Linearly polarized two-dimensional solitons for positive cross-phase modu-

lation parameter α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Elliptically polarized solitons for negative cross-phase modulation parameter α 81

7.2.1 Two-dimensional vectorial solitons . . . . . . . . . . . . . . . . . . 81

7.2.2 One-dimensional vectorial solitons . . . . . . . . . . . . . . . . . . 87

7.3 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 88

2



Contents

8 Dynamics of one-dimensional domain walls 91

8.1 Moving domain walls between linearly polarized domains for α > 0 . . . 92

8.2 Formation of elliptically polarized domains for α < 0 . . . . . . . . . . . 93

8.3 Nonequilibrium Ising-Bloch transition for elliptically polarized domains . 93

8.4 Chapter summary and concluding remarks . . . . . . . . . . . . . . . . . 95

9 Summary 97

Bibliography 101

APPENDIX 119

A Bosonic operator algebra 119

List of Abbreviations and Symbols 121

List of Figures 128

List of Publications 131

Danksagung 133

Short Curriculum Vitæ 135

Ehrenwörtliche Erklärung 137

3



Contents

4



1. Introduction

The effects of light-matter interaction have been a topic of vigorous scientific interest at

least since the observation of the absorption lines in the solar spectrum by Fraunhofer

[1]. Since those days there has been tremendous progress in both optical technology and

the growing techniques for the matter part of the interaction. Amongst other solid state

optical systems, semiconductor microcavities occupy a prominent place. A semiconductor

microcavity is realized by confining a solid state structure in an optical resonator. This

setup is similar to the well-known vertical-cavity surface-emitting laser (VCSEL) [2]. The

actual dynamics of these cavities depends crucially on the ratio between losses and the

strength of the light-matter interaction. A semiconductor microcavity exhibits losses both

from the photonic and the electronic component. The photonic losses originate from the

imperfection and finite Q factor of the cavity. Besides the photonic loss channels, further

losses arise due to the interaction of excitons with phonons and other imperfections of

the semiconductor. As long as the light-matter interaction is overpowered by irreversible

processes originating from the loss mechanisms, the light-matter coupling is incoherent.

The corresponding regime is called weak-coupling regime, cf. Ref. [3] for an introduction.

An important function of the cavity is the enhancement of the photonic field. If the cavity

mode can be shifted spectrally by more than the cavity linewidth, the coexistence of two

stable states at the same intensity can be reached. This effect is called bistability [4].

Other typical effects studied for weakly coupled microcavities include dissipative solitons

[5, 6] and spatially extended periodic patterns [7–11].

Advanced fabrication technologies allowed the improvement of both the purity of the

semiconductor crystal and the Q factor of the microcavity. These improvements enabled

the observation of the strong-coupling regime in semiconductor microcavities by Weisbuch

et al. in 1992 [12]. Strong coupling was observed before between atoms and cavity photons,

cf. Ref. [13] and citations therein. It is generally reached when the coupling strength

between two oscillators exceeds the mean of their loss rates. In this case, the coupled

quantum system develops two eigenstates. This splitting of the spectrum is called vacuum

Rabi splitting. The main difference to the weak-coupling regime is given by the coherent

light-matter interaction. Excitons and cavity photons form a new inseparable half-light,

half-matter state which is called exciton-polariton. Its dispersion relation consists of two

branches arising from the anticrossing of the respective dispersion relations. This unique

shape yields the specific properties of these quasiparticles. Polaritons are not only of
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1 Introduction

theoretical interest, but also offer the possibility for various applications. Due to its

photonic component, an exciton-polariton is 104 to 105 times lighter than an exciton.

This makes exciton-polaritons promising candidates for the observation of Bose-Einstein

condensation at high temperature [14–22] and superfluidity [23–30]. Effects such as pattern

formation, solitons, and their polarization dynamics have also been of vigorous interest

in the framework of polariton condensates [31–38]. Like in the weak-coupling regime,

the nonlinearity allows for the formation of bistable homogeneous solutions [29, 39–43]

and parametric effects [24, 43–47]. However, since the nonlinearity in the strong-coupling

regime originates from the coherent exciton-exciton interaction, it is both stronger and

faster than the nonlinearities typically achieved in the weak-coupling regime. Hence, a

major advantage of the strong-coupling regime with regard to possible applications lies in

the significant reduction of the pump intensity that is required to observe these effects.

In Ref. [40], the threshold of the pump intensity for bistability is observed to be 100

W/cm2, which is about two orders of magnitude smaller than the 10 kW/cm2 required

for semiconductor microcavities driven in the weak-coupling regime [48]. The typical time

scales lie in the picosecond range compared to the nanosecond range of the weak-coupling

regime.

1.1. Aim of this thesis

The strong and fast nonlinearity makes the exciton-polaritons a promising candidate for

applications as all-optical information storage and processing devices [49–56] and paves the

way to applications such as polaritonic lasing [57–60]. In order to reach this goal, one needs

to establish a mechanism to address and manipulate the field configuration at certain sites

in the transverse plane of the semiconductor microcavity. These locally nonuniform field

configurations can then be interpreted as optical bits. More generally, a comprehensive

understanding of the dynamics of the different spatially nonuniform solutions and their

mutual relations is required. The most natural transition from spatially uniform solutions

to nonuniform ones is given by the spontaneous formation of spatially periodic patterns

due to modulation instability [7]. This way of pattern formation is a well-studied topic

of nonlinear optics, e.g., in the case of nonlinear media with counter-propagating waves

[61–64] or other passive and active nonlinear optical systems [65–71], especially cavities

filled with a nonlinear medium [72–84]. Reviews on pattern formation in dynamic systems

can be found in Refs. [7–11]. However, the strong correlation between different sites of

an extended pattern makes them unsuitable for information processing purposes, since

any local alteration of the field imprinted in order to encode information would either

be damped out or influence the entire pattern. Nevertheless, studying spatially periodic
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1 Introduction

patterns paves the way to a better understanding of spatial cavity solitons, spatially

localized solutions that do not interfere with each other and are therefore individually

addressable. Cavity solitons have been described before in the weak-coupling regime

[48, 55, 56, 85–99]. The concepts presented there can easily be transferred to polariton

solitons, for a review cf. Ref. [100]. Due to their spatial confinement many solitons can be

written and erased on the transverse plane of the microcavity by shining localized address

pulses at the respective sites. The resulting change of the polariton density persists, since

its diffractive spreading is compensated by nonlinear effects [85–87, 99]. Dissipation due

to the losses is compensated by constantly pumping the system. This work includes a

comprehensive study of various aspects of pattern formation. The properties of spatial

solitons are primarily studied using the example of dark solitons.

Besides this practical goal, another scope of the current work is also extending the

understanding of the polariton nature. For that purpose, further effects such as the

formation of domain walls between different spatially homogeneous solutions shall be

studied. By emphasizing the links between all studied effects and their universality,

these findings can be transferred to other strongly coupled systems and systems with

light-matter interaction in general, such as the strong coupling of single photons to a qubit

[101] or the strong coupling of nanoantennas with atomic systems [102]. Furthermore, it

is worthwhile to take into account the internal structure of the exciton-polariton mediated

by the exciton spin and its interplay with the properties of the cavity, namely the splitting

between longitudinal and transverse polarized cavity modes (TE-TM splitting). The

hybrid half-light half-matter nature of exciton-polaritons reveals the necessity to treat

them as real quantum systems: On the one hand, excitons are spatially confined in

the quantum well. This property will emerge whenever the pump frequency is near the

excitonic resonance. On the other hand, the wave function of the cavity photon is extended

over the whole cavity.

Pumping mechanisms for the creation of exciton-polaritons include electrical pumping,

incoherent optical pumping, and coherent optical pumping. Throughout this work, the

latter mechanism will be used exclusively. The pump frequency is chosen such that its

detuning from the excitonic resonance corresponds to the lower polariton branch. Special

emphasis will be on effects arising from the exciton spin which is inseparably linked with

the polarization state of the cavity photons. Pumping in the vicinity of the parabola-like

bottom of the lower polariton branch leads to effects which have been described in the

framework of Kerr cavities exhibiting a perfect parabolic dispersion relation. However, by

choosing a frequency far from the bottom of the lower polariton branch, the dispersion

relation can no longer be approximated by a parabola and thus exciton-polaritons show

a much richer variety of effects. Furthermore, the combination of spin and polarization
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effects as it is available for exciton-polaritons, has no analogon in the Kerr cavity and

thus the related effects are also unique for the polaritonic cavity.

1.2. Structure of the thesis

This thesis is basically divided into two main parts. The first part is of introductory

nature. It covers the derivation of the basic equations of motion and contains Chapts.

2 and 3. In Chapt. 2, the idea of exciton-polaritons arising from strong coupling of

excitons and photons is introduced, whereas all effects arising from the exciton spin

and the polarization of the cavity photons are outsourced to Chapt. 3. The respective

equations of motion are derived via an elegant Hamiltonian approach using the language

of quantum field theory.

Chapter 4 gives an overview over all solutions of the equations of motion and discusses

the used analytical and numerical methods. The different solutions will then be discussed

in the second part of the thesis which consists of Chapts. 5-8. This part comprises the

results of our research.

Chapter 5 contains an analytical study of all spatially uniform solutions. A section is

devoted to the linear polariton dispersion relation disregarding effects originating from

the pump and the nonlinearity. These findings are extended in two ways: on the one

hand by including the TE-TM splitting of the dispersion relation and on the other hand

by finding an analytical expression which estimates its nonlinear blueshift. Subsequently

the bistability conditions for solutions of the full spinless equations of motion will be

discussed as well as the bifurcation of solutions originating from the exciton spin. An

important prerequisite for the spontaneous formation of periodic patterns is realized by

investigating the destabilization of the homogeneous solutions in favor of spatially periodic

perturbations (modulation instability).

A comprehensive study of pattern formation is given in Chapt. 6. In the spinless case

the influence of the detunings and the pump power on the shape of the arising patterns

is studied. Effects arising from the exciton spin and the TE-TM splitting of the cavity

modes comprise the spontaneous formation of elliptically polarized patterns and their

spontaneous uniform movement, respectively.

One- and two-dimensional spatial solitons are covered in Chapt. 7. The emphasis is put

on dark solitons nesting on the upper branch of the bistability loop. Pseudospin effects

lead to the formation of vectorial solitons.
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Chapter 8 is linked to the preceding chapter and covers another type of localized solutions,

namely one-dimensional domain walls between different homogeneous solutions.
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2. Strong Coupling

Ever since Einstein’s description of the photoelectric effect [103], the physics of optical

light sources has been intrinsically tied to atomic physics and later also to solid state

physics. This alliance became even stronger with the advent of nonlinear optics [104, 105]

after the invention of the laser [106, 107].

In the textbook examples for nonlinear optical systems [108, 109], the nonlinearity is

usually introduced via a quantum mechanical derivation of the nonlinear susceptibilities.

This treatment is appropriate for the description of the nonlinear properties of off-resonant

systems, such as atomic vapors, since they consist of free atoms whose atomic parameters

are known with high accuracy. A prototypical example for the equation of motion for such

a system is the Nonlinear Schrödinger equation. It is suitable for the description of optical

systems whose dynamics is dominated by a third-order nonlinearity, e.g., propagation of

light in nonlinear optical fibers [109]. A natural generalization of this model was presented

by Lugiato and Lefever [72] considering a coherently driven system with Kerr nonlinearity

and losses. This Lugiato-Lefever model will be used as a starting point for the discussion

of polariton pattern formation in Sec. 6.1.

However, these rather simple models are generally not suitable for the proper description

of the resonant interaction between light and semiconductors excitations. In this case, the

nonlinearity itself depends crucially on the properties of the irradiating photon field such

as intensity, frequency, polarization state, and cavity parameters. Thus, it is necessary to

find a self-consistent solution of the resulting coupled system of equations.

Semiconductor microcavities, as depicted in Fig. 2.1, display a realization of the aforemen-

tioned coupling between cavity photons and elementary excitations of a semiconductor,

namely excitons. Depending on the ratio between the exciton-photon coupling and the

influence of the loss channels, one can distinguish between two different coupling regimes

between excitons and photons: weak coupling and strong coupling. Both interaction

regimes are studied in Sec. 2.1. The successive section 2.2 is devoted to the derivation of

the equations of motion of exciton-polaritons, new quasiparticles arising from the strong

coupling of excitons and cavity photons in a coherently driven semiconductor microcavity.

These equations will be the starting point for all subsequent investigations.
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2 Strong Coupling

A Fabry-Pérot cavity can be characterized by the cavity length Lc and the reflection

coefficient r of the dielectric BM. In contrast to conventional resonators, microcavities

are characterized by a comparably small length Lc, typically 0.2 − 0.4 μm. Therefore

the spacing between the frequencies of the eigenmodes is so large that each stop-band

usually contains exactly one cavity mode. Since the reflectivity is less than unity [110],

the cavity transmits light with a characteristic spectrum. These transmission peaks are

broadened because the light can tunnel through the Bragg mirrors even in their stop-bands

representing the main loss channel of the resonator. A measure for this process to happen

is given by the quality factor Q of the cavity. It can be defined by the ratio of the

electromagnetic energy U(t) stored in the cavity to the energy dissipated per cycle via

tunneling of light through the mirrors [3, 13, 110–113]:

Q = �ω̃c

U

dU/dt
. (2.1)

Here, �ω̃c denotes frequency of the resonant cavity mode. Solving the differential equation

(2.1) yields an exponential decay of U(t) with lifetime

τ =
Q

�ω̃c

. (2.2)

The respective transmission spectrum has a pole at the complex frequency ω = �ω̃c +

i�ω̃c/2Q. For ω = ω̃c = �ω̃c + i�ω̃c, the comparison of the imaginary parts yields a

quality factor of

Q =
�ω̃c

2�ω̃c

. (2.3)

Equations (2.2) and (2.3) yield a lifetime of

τ =
1

2�ω̃c

. (2.4)

It is a measure for the average storage period of a photon inside the microcavity. The

real part of ω̃c matches the conventional definition of the eigenfrequency of the cavity. Its

natural denotation is ωc. However, it shall be noted that its imaginary part

γc := �ω̃c (2.5)

defines a photon decay rate. The splitting between TE- and TM polarized cavity modes

was omitted here and will be discussed later in Sec. 3.2.

the special issue of Chaos, Solitons & Fractals on transverse nonlinear optics introduced by Ref. [74].
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2 Strong Coupling

2.1.2. Excitons in a semiconductor quantum well

The photoemission lines of excitons were first observed in the spectrum of cooled benzene

in the 1920s by Kronenberger and Pringsheim [114]. The origin of these lines was

interpreted by Frenkel as stemming from excitation waves in the crystal [115] which he

later termed excitons [116]. An exciton is a bound state of an electron and a hole tied

together by their mutual Coulomb force. One usually distinguishes between two main

types: Frenkel excitons and Wannier-Mott excitons. Frenkel excitons arise from the strong

Coulomb interaction between both constituents which usually exists in materials with

a small dielectric constant such as organic molecular crystals. Thus, they are subjected

to a distinct spatial confinement and their binding energy is typically in the range of

100− 300 meV. Wannier-Mott excitons [117, 118] are typical for semiconductors which

naturally have a much higher dielectric constant. Their size can reach more than ten

lattice constants and their binding energy is much smaller lying in the range of a few meV.

There are also hybrid forms of Frenkel-Wannier-Mott excitons combining the huge binding

energy with relatively large size. They can arise in mixed organic-anorganic structures

[119].

However, since the excitons in the semiconductor considered here are of pure Wannier-

Mott type, we will limit all following considerations to this case. The effective mass

approximation allows to describe them as quasi-free particles with parabolic dispersion

relation, where the influence of the periodic crystal potential is encoded in the effective

mass. These effective masses are usually much smaller than the mass m0 of the free

electron in vacuum. In, e.g., GaAs, the effective electron mass amounts me = 0.067m0

and the effective mass of the heavy hole is mhh = 0.45m0. Forming an exciton out of an

electron and a heavy hole is energetically preferable compared to an exciton formed out of

an electron and a light hole. The Coulomb interaction between electron and hole allows

to treat the exciton like a hydrogen atom with reduced mass μ = memhh/(me + mhh) and

renormalized charge e2 → e2/ε, where ε is the dielectric constant of the semiconductor

[3, 120]. The binding energy is then approximately three orders of magnitude smaller than

that of the hydrogen atom. In contrast to the hydrogen atom, the exciton has a finite

lifetime in the nanosecond range [121]. However, as long as electron and hole are bound

together, it is reasonable to treat them as a proper quasiparticle instead of regarding

electron and hole separately. This approximation will be used in the following section to

derive the equations of motion of the exciton.

It is well-known, that the density of states and the wave function of the excitons are

influenced by the geometry and dimensionality of the semiconductor [3, 120, 122–124].

Due to their large size, especially Wannier-Mott excitons are subjected to confinement

14
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effects. The binding energy of a perfect two-dimensional exciton in a quantum well

is four times as strong as in the bulk material [122, 123]. The oscillator strength of

the resonance is increased likewise. In a perfect one-dimensional system, solving the

Schrödinger equation would even yield a ground state of infinite binding energy [124].

Since real structures are never purely one-dimensional, there are no such divergencies in a

quantum wire. However, quantum well structures based on GaAs materials also exhibit

strongly enhanced excitonic effects due to the dimensional reduction.

Unlike the hydrogen atom, the exciton has a finite lifetime. This displays a damping

mechanism for the excitons. The time constant related to this population decay of the

electron-hole pairs is called T1. It is in the range of 1 ns. The other characteristic time

scale T2 is related to the damping due to dephasing processes of the exciton wave function.

These dephasing processes occur due to growth inhomogeneities of the quantum well and

also collisions of the exciton with phonons. Measurements of the exciton dephasing time

[125, 126] yield a value of about 1 ps. The dephasing processes are thus about three

orders of magnitude faster than the exciton lifetime. Analogously to the definition of the

photon decay rate γc in Eq. (2.5), it is reasonable to define the exciton decay rate

γ0 :=
1

T2

. (2.6)

The existence of phonons is crucially depending on the temperature and the purity of the

semiconductor. Phonons can be suppressed by cooling down the semiconductor and using

suitable materials such as nitrides.

2.1.3. Semiclassical description of exciton-photon coupling

Excitons can most easily be created by optically exciting electrons and holes in a semicon-

ductor. The response of the material to a weak external field is governed by the transition

amplitude of an electron from the valence band to the conduction band. As stated before,

the excitons that typically arise in a semiconductor are Wannier-Mott excitons. Thus, the

linear optical properties of the semiconductor are governed by Coulomb interaction effects.

The nonlinear optical properties of the semiconductor are influenced by the density of

the excitons. As long as the exciton-photon interaction is overpowered by the dephasing,

the absorption of photons and the subsequent formation of excitons merely causes the

bleaching of the semiconductor. This eventually leads to a dependence of the nonlinear

refraction coefficient on the exciton density. Thus the exciton-light coupling is incoherent

and therefore the absorption of a photon is an irreversible process. The corresponding
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2 Strong Coupling

interaction regime is referred to as weak-coupling regime. The typical time constant is

imprinted by the exciton lifetime T1.

Figure 2.2: Rabi splitting and strong coupling: (a) schematic set-up of a semiconductor microcavity
with losses γc due to the Fabry-Pérot mirrors and excitonic losses γ0; the strength of the exciton-
photon coupling is proportional to the Rabi frequency ΩR; (b) schematic emission spectrum of the
strongly coupled system with Rabi oscillations in arbitrary units; the linewidths are given by the
mean loss constant γ′ := (γ0 + γc)/2.

However, this conventional picture is only appropriate in the weak-coupling regime.

Reducing the excitonic and photonic losses as well as the dephasing leads to other

effects arising from the coherent interaction of excitons and cavity photons that require a

different description. In this picture, it is sensible to interpret both excitons and photons

as interacting quantum mechanical oscillators, cf. Fig. 2.2(a). If we furthermore assume

a vanishing detuning between them, we have two same-energy oscillators with respective

decay rates. If their coupling strength exceeds the mean value γ′ := (γ0 + γc)/2 of the

decay rates, the coupled system will enter the strong-coupling regime. The strong-coupling

regime is characterized by the splitting of the spectrum into two eigenenergies. This effect

is known as Rabi splitting [12, 127], cf. Fig. 2.2(b). The numerical value of the Rabi

splitting is equal to twice the product of the transition dipole moments and the energy

stored in the vacuum field. The expression Rabi splitting was coined in the framework

of single atoms. Actually, this denotation can also be applied in case of many-atom

systems such as semiconductor quantum wells. The exciton-photon interaction constant
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2 Strong Coupling

is proportional to the Rabi splitting ΩR, cf. Fig. 2.2. In contrast to the weak-coupling

regime, the coherent interaction of excitons and photons in the strong-coupling regime

is a reversible process [127–133]. The typical time constant is the dephasing time T2.

Due to the high Q mirrors, the photons have such a high lifetime in the cavity, that

they can interact with the excitons multiple times, cf. Fig. 2.2(a). Hence, excitons and

photons have to be described by a joint wave function. However, the saturation of the

strong-coupling regime due to electron-hole pair screening of the quantum-well exciton

also has to be taken into account [134]. In the case of an InGaAs quantum well, it leads

to saturation densities of 4.3 · 1010 cm−2 which is in good agreement with the theoretical

prediction from Ref. [135].

The dispersion relation of the exciton-polariton arises from the anticrossing of the two

dispersion relations and is substantially different from both of them. It consists of

two branches which are separated by the Rabi splitting. The dispersion relation will

be discussed in Sec. 5.1. The genuinely new shape of the dispersion relation reflects

the fact, that exciton-polaritons represent the non-perturbative coupling between the

electromagnetic field and the optically induced polarization of the matter.

2.1.4. Quantum description of exciton-photon coupling

However, the semiclassical treatment of light-matter coupling as it was discussed in the

previous paragraph can be insufficient in some cases. A full quantum description is needed,

when single-photon processes play a role [136]. The shape of the emission spectrum is

an indicator showing how far the system is from the true quantum regime. According

to Ref. [137], pump-probe experiments yield a photon density of about 90 photons per

μm2 for the saturation of normal-mode coupling. This value for the photon density can

be reduced drastically by decreasing the diameter of the probe beam or alternatively by

decreasing the size of the active semiconductor material. Actually, in order to enter the

true quantum regime, it turns out that the use of quantum dots is essential [131, 138].

Then, single-photon processes can be observed in semiconductor microcavities such as in

the case of single-atom vacuum Rabi splitting in a cavity [139].

Since this work solely deals with quantum wells, it suffices to treat the exciton-photon

interaction semiclassically.
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2 Strong Coupling

2.2. Equations of motion of exciton-polaritons

2.2.1. Exciton-polariton Hamiltonian

The Hamiltonian Ĥ for the semiclassical treatment of the formation and dynamics of

exciton-polaritons reads [47, 140]

Ĥ = Ĥcav + Ĥexc + Ĥlm. (2.7)

Ĥcav describes the dynamics of the cavity photons, Ĥexc contains all excitonic contributions

and Ĥlm describes the mutual interaction between both types of quasiparticles (light-

matter interaction). With â†
k and âk being the creation and annihilation operator for

a cavity photon with wave vector k, respectively, and b̂†
k and b̂k being the respective

operators for excitons, the contributions to the total Hamiltonian read

Ĥcav =
∑

k

ωcav(k)â†
kâk, Ĥexc =

∑
k

ωexc(k)b̂†
kb̂k + ĤXX, and Ĥlm =

ΩR

2

∑
k

(
â†

kb̂k + b̂†
kâk

)
.

(2.8)

Here, ωcav(k) is the dispersion relation of the photonic state with wave vector k. The

sum runs over all allowed k states. Analogously, ωexc(k) is the dispersion relation of

the excitonic state with wave vector k. Since we only consider resonant experiments

with excitons formed by an electron in the valence band and a heavy holeb in the

conduction band, the k sum runs over all possible excitonic states obeying this dispersion

relation. This two-band description is typical for direct semiconductors such as GaAs.

The Coulomb interaction between two excitons shall be denoted by ĤXX. This term bears

the nonlinearity since it contains both two creation and two annihilation operators. A

theoretical model of the exciton-exciton scattering was provided in Ref. [141]. Reference

[142] contains a detailed theoretical and experimental study of the biexciton.

In order to discuss the linear polariton dynamics first, we introduce the linearized Hamil-

tonian Ĥ0 via

Ĥ = Ĥ0 + ĤXX. (2.9)

Then Ĥ0 is the Hamiltonian of two coupled harmonic oscillators and therefore bilinear

in the ladder operators c. Therefore it can be diagonalized by means of a Bogoliubov

bThe energy of the heavy hole is lower than that of the light hole. Therefore it is needed for the formation
of a ground state exciton. This fact will play an important role in Sec. 3.1 when we additionally take
into account the spin of the excitons. Heavy holes have spin ±3/2 compared to ±1/2 of light holes.

cĤ0 looks similar to the Jaynes-Cummings Hamiltonian (JCH) modelling the interaction between a two-
level system and cavity photons. The crucial difference lies in the treatment of the matter contribution:
whereas Ĥ0 solely contains bosons, the JCH contains a fermion-boson coupling incorporated by the
respective fermionic operators. In Appendix A we discuss why excitons can be treated as bosons and
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2 Strong Coupling

transformation [40, 140, 143]. The coefficients of this unitary transformation are called

Hopfield coefficients [143]. They will be introduced properly in Sec. 5.1 in the framework

of the linear polariton dispersion relation. At this point, however, the equations of motion

shall be developed in the basis of excitons and cavity photons.

The nonlinear contribution ĤXX to the Hamiltonian comes from the Coulomb interaction

between two excitons. A feasible expression for it can be deduced from the Hartree-Fock

approximation of the respective Hamiltonian in second quantization. ĤXX then reads

ĤXX =
1

2

∑
k, k′, q

VXX(q) b̂†
k+qb̂†

k′−qb̂kb̂k′ . (2.10)

As stated before, the effective interaction potential VXX(q) is determined by the Coulomb

interaction between two excitons. q denotes the momentum transfer in the course of an

elastic exciton-exciton scattering. Since resonantly excited excitons have very small wave

vectors, VXX(q) can be approximated by its zero wave vector value VXX(0) = 6e2λexc

Aε
. Here,

λexc is the exciton radius and A denotes the macroscopic quantization area. The static

dielectric constant ε of the quantum well is introduced heuristically in order to take into

account the electrostatic screening of the interaction originating from the carriers of the

crystal [120].

2.2.2. Heisenberg equations of motion

The equations of motion for an operator ĉk can be determined via the Heisenberg equation

i∂tĉk =
[
Ĥ, ĉk

]
. For the annihilation operators they read

∂tâk = iωcav(k)âk +
iΩR

2
b̂k, (2.11)

∂tb̂k = iωexc(k)b̂k +
iΩR

2
âk + 2 i VXX(0)

(
b̂† 	 b̂ 	 b̂

)
k

. (2.12)

We exploited the fact that V (q) can be approximated by V (0). The 	 symbol denotes

the convolution of the fields. The commutation rules for bosonic ladder operators and the

computation of the Coulomb term can be found in App. A.

An averaging procedure leads to macroscopic fields Ek = 〈âk〉 and Ψk =
〈
b̂k

〉
. A Fourier

transformation then yields the equations of motion in position space. It is useful to specify

the dispersion relations at this point. The dispersion relation of cavity photons reads

�ωcav(k) = �
2k2/2mph. Upon Fourier transformation this transforms to the negative

transverse Laplacian k2 → −∇2
⊥ = −∂2

x − ∂2
y .

enlist their operator algebra.
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2 Strong Coupling

Since the effective mass of the of the cavity photons is much smaller than that of the

excitons, they can be assumed to be nearly dispersionlessd. Two further contributions have

not been taken into account yet and will be added heuristically to the final equations of

motione: The first of them is linked with the losses discussed in Sec. 2.1. They are called

γc and γ0 denoting the photonic and excitonic damping constant, respectively. These

losses can be compensated by a coherent external optical pump Epe−iωpt with amplitude

Ep and frequency ωp.

After having collected all these parts, we can write down the full dimensionless equations

of motion in position space

∂tE = − (γc − iΔc) E + i∇2
⊥E + iΨ + Ep, (2.13)

∂tΨ = −(γ0 − iΔ0)Ψ− i|Ψ|2Ψ + iE. (2.14)

The scaled photonic field is denoted with E, the excitonic field with Ψ. The first order

time derivative characterizes mean-field models. A rigourous derivation of the wave

equation for the electric field from Maxwell’s equations would have led to second order

time derivatives. For the sake of better readability, the dependence of the fields on the

transverse coordinates is not mentioned explicitly. Time is measured in units of 1/ΩR.

The parameters Δc,0 = (ωp − ωc,0)/ΩR describe the detuning of the pump frequency ωp

from the resonance frequencies of the cavity (ωc) and of the excitons (ω0), respectively.

The transverse coordinates x and y are normalized to x0 =
√

c/(2nk̂ΩR), where n is the

refractive index and k̂ = nω/c the wave number. The pump is normalized such that the

incident pump intensity is Iinc = �ωΩ2
R|Ep|2/gγc [24, 40, 148]. The loss rates will be set

γ0 = γc = 0.1 in all numerical simulations. This implies that a time of t = 10 corresponds

to a photon lifetime.

2.3. Chapter summary and concluding remarks

In this chapter, the equations of motion for exciton-polaritons in a coherently driven

semiconductor microcavity were derived. Starting point for this derivation was the

Hamiltonian for the interaction between excitons and cavity photons in second quantization.

An averaging process then leads to the equations of motion for the photon field E and the

dThis approximation is justified, as long as one regards processes which are sufficiently far away from the
excitonic resonance. For processes near the excitonic resonance, the excitonic dispersion has to be taken
into account [144–146].

eThese contributions could also be introduced at the level of the Hamiltonian by coupling the system to
an external reservoir, cf., e.g., Ref. [140] or Ref. [147] using a Lindblad formalism. We refrained from
this approach thus keeping an undisturbed focus on the basic interaction processes.
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2 Strong Coupling

polariton field Ψ. If the coupling strength between excitons and photons is larger than

the losses, they enter the strong-coupling regime. The strong coupling manifests itself in

Rabi oscillations between the two quantum fields. The Coulomb interaction between two

excitons leads to a third order nonlinearity in the exciton equation. It should be noted

that this chapter solely presents the scalar equations whereas vectorial effects originating

from the exciton spin and the TE-TM splitting between the cavity modes are transferred

to Chapt. 3.
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3. Spin and polarization effects

After having introduced excitons, we also have to deal with their internal properties, namely

their spin degree of freedom. In the course of its optical creation, an exciton-polariton

inherits spin and dipole moment from the exciton. In Sec. 3.1 the nonlinear interaction

between excitons with different spins is added to the scalar polariton Hamiltonian (2.7).

Due to the hybrid nature of exciton-polaritons, this spin is intrinsically tied to the

polarization properties of the photonic part, which is reflected in TE-TM splitting of the

respective modes. It acts as an effective magnetic field on the polaritons. The linear

pseudospin precession associated with this field will be dealt with in Sec. 3.2. Both effects

lead to an augmentation of the scalar equations of motion (2.13)-(2.14).

3.1. Spin effects

3.1.1. Exciton spin

An exciton is a bound state of an electron in the conduction band and a hole in the valence

band. Since both constituents are fermions, the projection of their respective spins on the

structure growth axis is always half-integer. It is reasonable to identify this axis with the

z axis. In the following, all projections have to be understood with respect to this z axis.

Whereas for electrons, the projection of the total angular momentum equals that of the

spin (Je
z = Se

z = ±1
2
), the projection of the hole’s total angular momentuma is the sum of

that of the spin and that of the mechanical angular momentum (Jh
z = Sh

z +Mh
z = ±1

2
,±3

2
).

Light holes are characterized by antiparallel Sh
z and Mh

z netting Jh
z = ±1

2
. One the other

hand, heavy holes have Jh
z = ±3

2
due to the parallelity of Sh

z and Mh
z . In quantum wells,

the energy levels of the heavy holes are lower than those of light-holes [3, 111, 149–151].

Therefore, the ground state exciton is usually formed by an electron and a heavy hole.

The total exciton spin J can thus take the values ±1 and ±2. In order to guarantee spin

conservation in the framework of single-photon processes, only excitons with spin ±1 can

be excited. The states with J = ±2 are called dark states, since they are not optically

excitable. The optically excitable bright states, however, can be regarded as a bosonic

two-level system. This is an extraordinary feature, since two-level systems are usually

aIt is common in the field of polariton physics to call J spin. We will adopt this denotation in the current
work.
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3 Spin and polarization effects

formed by fermions. The possible use of semiconductor microcavities as spin-dependent

optoelectronic devices is discussed in Ref. [53].

Excitons are subjected to various spin-relaxation mechanism [3, 111, 152–154]. These

mechanisms are responsible for the finite exciton lifetime discussed in Sec. 2.1. The

predominant relaxation mechanism for excitons confined in a quantum well involves

mutual spin-flip exchange interactions of electrons and holes [155, 156]. The Coulomb

interaction consists of a short-range part leading to the coupling between heavy-hole and

light-hole excitons and a long-range part leading to transitions between the optically

excitable heavy-hole excitons. The short-range interaction allows the alteration of the

optical response via the interaction between dark-state excitons [157]. However, it is

suppressed for quantum well excitons since the degeneracy between light and heavy holes

is lifted [155].

3.1.2. Exciton-exciton interaction Hamiltonian

Without taking into account the exciton spin, the Coulomb interaction between two

excitons could be described with ĤXX, cf. Eq. (2.10). This term will be preserved in

the spin-dependent model derived in this section, namely it will represent the nonlinear

interaction between two excitons with equal spin:

ĤXX,sym =
1

2

∑
σ

∑
k, k′, q

VXX,sym(q) b̂†
k+q,σ b̂†

k′−q,σ b̂k,σ b̂k′,σ. (3.1)

The σ sum runs over the integer values σ = +1 and σ = −1. VXX,sym(q) denotes the

matrix element of the exciton-exciton scattering in triplet configuration (parallel spins)

with momentum transfer q. The contribution of the singlet configuration (antiparallel

spins) reads

ĤXX,asym =
1

4

∑
σ

∑
k, k′, q

VXX,asym(q) b̂†
k+q,σ b̂†

k′−q,−σ b̂k,σ b̂k′,−σ (3.2)

with VXX,asym(q) being the respective matrix element [151].

All other contributions to the polariton Hamiltonian do not contain contributions mixing

the two exciton spins. Thus, the scalar equations of motion (2.13)-(2.14) are reproduced

in the vectorial equations of motion. Additionally, there is a contribution to the exci-

tonic equations of motion originating from the spin-mixing Hamiltonian ĤXX,asym. The

contribution of ĤXX,asym to the final equations of motion can be brought to the form

∂tΨ
σ ∝ α

∣∣∣Ψ−σ
∣∣∣2 Ψσ (3.3)

24



3 Spin and polarization effects

where the factor α comes from the Fourier transform of VXX,asym(0). The full equations of

motion thus read

∂tE
± = − (γc − iΔc) E± + i∇2

⊥E± + iΨ± + E±
p , (3.4)

∂tΨ
± = −(γ0 − iΔ0)Ψ

± − i
(
|Ψ±|2 + α|Ψ∓|2

)
Ψ± + iE±. (3.5)

From now on, the superscript ± replaces the notation with σ = ±1.

3.1.3. Numerical value of the cross-phase modulation parameter α

The parameter α in Eq. (3.5) describes the cross-phase modulation between polaritons

with pseudospin +1 and −1. This is the only term in Eqs. (3.4)-(3.5) that mixes the two

fields. The determination of the numerical value of α and even of its sign is discussed

controversially. In the following, a brief overview of this discussion will be presented.

A theoretical model of the exciton-exciton scattering in a semiconductor quantum well

including the inter-exciton exchange of carriers and the spin degrees of freedom was

presented in Ref. [141]. The influence of the cavity on the electron-hole spin flip of

polaritons was investigated in Ref. [158]. The spin flip rate was found to be suppressed

by four orders of magnitude compared to the bare quantum well case and therefore

unmeasurable. This suppression comes from the Rabi splitting between the optically

excitable and optically forbidden transitions lifting their former degeneracy.

The assumption of α being negative and small compared to 1 is state of the art [149].

The authors of Ref. [149] additionally found a strong dependence of α on the relative

detuning between the excitonic and the photonic resonance which would allow values for

α ranging from 0 to less than −1.

However, there is evidence that under certain circumstances α can also be positive [159].

This repulsive interaction in the singlet configuration is explained by its proximity to the

biexciton resonance and by effects originating from the onset of exciton saturation for suf-

ficiently high exciton densities. The experimental findings discussed in the supplementary

material of Ref. [159] even indicate the possibility of α > 1.

The sign of α plays a crucial role in all our calculations in the following chapters since

only for α < 0 there is a spontaneous symmetry breaking between the two polarizations.

This will be predicted analytically in terms of plane-wave solutions of Eqs. (3.4)-(3.5)

and verified for various nonuniform solutions.
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3 Spin and polarization effects

3.2. TE-TM splitting

In the previous section it was shown that the exciton spin is intrinsically tied to the

polarization state of the cavity photons. In this section, the contribution of the TE-TM

splitting between the cavity modes to the equations of motion will be derived. The

linear pseudospin precession associated with this effect can be traced back to an effective

magnetic field acting on the polaritons. Since it is a linear effect, its pure occurrence can

be accessed experimentally in the linear regime, e. g., a pump range where the intensity of

the optical excitation is small enough such that the effects of nonlinear polariton-polariton

interaction do not play a crucial role and can therefore be neglected.

Figure 3.1: (a) Geometry of TE-TM splitting: The wave vector of the incoming electric field and
the z axis span the plane of incidence, where ϑ denotes the tilt angle of the electric field; all vectors
in this plane are displayed by solid lines; the quantum well is positioned in the x-y plane; all vectors
in this plane are displayed by dashed lines; ETE and ETM denote the projection of the transverse
electric and the transverse magnetic component of the electric field on the x-y plane, respectively; Φ
denotes the azimuthal angle; (b) dependence of the direction of the effective magnetic field on the
azimuthal angle Φ.

The TE-TM splitting of the polariton modes is mainly governed by the TE-TM splitting of

the cavity modes. The transmissivity τ of a Fabry-Pérot cavity obeys the Airy formula

τ =
1

1 + F sin2 δ
2

. (3.6)

Here, F denotes the finesse of the cavity. It is proportional to the Q factor. The resonances

of the cavity can be derived by calculating the minima of the denominator. The total

phase shift accumulated by the field in one round trip in the cavity is denoted with δ. It

amounts

δ = 2 (kzLc + φ) , (3.7)

where the phase jumps acquired from the reflection at the mirrors are contained in φ. The
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value of φ is different for TE and TM polarized fields. Hence there is a difference between

their respective resonance frequencies.

Following the analysis of Ref. [160], the dependence of the TE-TM splitting ΔTE-TM :=

ωTM (ϑ)− ωTE (ϑ) on the angle ϑ according to Fig. 3.1(a) reads

ΔTE-TM ∝ 2 cos ϑeff sin2 ϑeff

1− 2 sin2 ϑeff

. (3.8)

The effective angle ϑeff is linked with ϑ via ωm(ϑ) = ωm(0)/ cos ϑeff where ωm(ϑ) denotes

the cavity-mode frequency. This TE-TM splitting vanishes for normal incidence and

increases basically with sin2 ϑeff. For sufficiently small angles ϑ, this translates to a

quadratic dependence on the modulus k of the in-plane wave vector [111, 154]:

ΔTE-TM ≈ β̃
(
k2

x + k2
y

)
. (3.9)

Here, β̃ can be denoted TE-TM splitting parameter. Its numerical value can be deduced

from Ref. [154], where a TE-TM splitting of about 1.25 meV/� at a wave vector of about

3 μm−1 is reported.

After having spotted the existence of the TE-TM splitting, it has to be incorporated

into the Hamiltonian and finally into the equations of motion. For that, we express this

splitting in coordinates representing the TE- and TM-polarized mode and transform it

then via Cartesian coordinates to the necessary basis of left- and right-circularly polarized

cavity photons [161]. In coordinates adapted to the TE and TM modes, the Hamiltonian

equation of motion has the diagonal form

i�
∂

∂t

⎛⎝ETE

ETM

⎞⎠ = �

⎛⎝ΔTE-TM

2
0

0 −ΔTE-TM

2

⎞⎠⎛⎝ETE

ETM

⎞⎠ . (3.10)

The change-of-base matrix to Cartesian coordinates reads [162]

M1 =
1√
2

⎛⎝1 i

1 −i

⎞⎠ . (3.11)

The coordinate transformation from Cartesian to circularly polarized coordinates is given

by

M2 =

⎛⎝cos Φ − sin Φ

sin Φ cos Φ

⎞⎠ , (3.12)

where Φ is the polar angle in the plane spanned by Ex and Ey, cf. Ref. [161] and

Fig. 3.1(a). In the circularly polarized coordinates (E+, E−)t = M2M1 (ETE, ETM)t the
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Hamiltonian equations of motion are transformed to

i�
∂

∂t

⎛⎝E+

E−

⎞⎠ =
�ΔTE-TM

2
H̃TE-TM

⎛⎝E+

E−

⎞⎠ , (3.13)

where the transformed Hamiltonian reads

H̃TE-TM =

⎛⎝ 0 cos 2Φ + i sin 2Φ

cos 2Φ− i sin 2Φ 0

⎞⎠ =
1

k2

⎛⎝ 0 (kx − iky)2

(kx + iky)2 0

⎞⎠ .

(3.14)

This dependence on 2Φ instead of just Φ is visualized in Fig. 3.1(b). The factor 1/k2 in

Eq. (3.14) cancels with the factor k2 from ΔTE-TM, cf. Eq. (3.9).

After backtransformation into real space, the final equations of motion for exciton-

polaritons with spin and TE-TM splitting read

∂tE
± = − (γc − iΔc) E± + i∇2

⊥E± + iΨ± − iβ (∂x ∓ i∂y)2 E∓ + E±
p , (3.15)

∂tΨ
± = −(γ0 − iΔ0)Ψ

± − i
(
|Ψ±|2 + α|Ψ∓|2

)
Ψ± + iE±. (3.16)

Transforming β̃ to its dimensionless counterpart yields β = 0.05, thus a value much smaller

than unity. This value will be used in all simulations in Sec. 6.3.

3.3. Chapter summary and concluding remarks

Starting from the scalar case discussed in Chapt. 2, we derived the equations of motion

for exciton-polaritons in a coherently driven semiconductor microcavity with the inclusion

of terms originating from the exciton spin and the polarization states of the cavity

photons linked with it. These terms can be embedded in the Hamiltonian formalism.

The Coulomb interaction between two excitons then consists of two terms describing the

effective interaction between excitons with equal and opposite spin, respectively. It should

be noted that only optically excitable states are taken into account so that the influence

of dark states is only represented indirectly in their contribution to the exciton-exciton

interaction with different spin. Since the exciton spins +1 and −1 are coupled to the

right- and left-circularly polarized photons, respectively, their contribution to the vectorial

equations of motion originating from the energy splitting between TE- and TM-polarized

cavity modes has to be taken into account, too. It manifests itself in a linear term which

directly breaks the symmetry between the + and − fields and is often interpreted as an

effective magnetic field due to this action.
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4. Solutions of the equations of motion

In the preceding chapters, we derived the equations of motion of coherently pumped

exciton-polaritons for three cases:

1. In the scalar case (cf. Sec. 2.2, Eqs. (2.13)-(2.14)) all effects arising from the exciton

spin and the corresponding polarization of the photonic component are disregarded.

2. Taking into account the exciton spin and the nonlinear interaction between excitons

with different spin leads to the vectorial equations (3.4)-(3.5), cf. Sec. 3.1.

3. These equations can be augmented further by additionally considering the linear

coupling between the two polarization states due to the energy splitting between

cavity modes with transverse electric and transverse magnetic polarization (TE-TM

splitting), cf. Eqs. (3.15)-(3.16) in Sec. 3.2.

In the following chapters, we want to discuss several solutions of these partial differential

equations (PDEs) starting with homogeneous solutions (HSs), i.e., solutions that have a

constant amplitude both in time and the two transverse dimensions. Spatially extended

and spatially localized structures nesting on a HS are discussed in Chapts. 6 and 7,

respectively. Chapter 8 is devoted to the dynamics of one–dimensional walls between

different HSs.

4.1. Typology of solutions

The fields E and Ψ in the equations of motion are not directly measurable, but the

squares of their absolute values are proportional to the photon and exciton density

per unit area, respectively, and can therefore be determined in an experiment. They

can be interpreted as intensities and denoted with IE = |E|2 and IΨ = |Ψ|2. In the

spin-dependent case, it is reasonable to introduce the total intensity of the output field

IE = |E+|2 + |E−|2 and the respective quantity IΨ = |Ψ+|2 + |Ψ−|2 denoting the excitonic

component of the total intensity. Another important quantity is the polarization degree

ρE =
(
|E+|2 − |E−|2

)
/IE (or ρΨ =

(
|Ψ+|2 − |Ψ−|2

)
/IΨ), which may vary between −1

and +1. Whereas linearly polarized solutions have a polarization degree of 0, the extreme

cases +1 and −1 characterize left and right circularly polarized solutions, respectively.

All intermediate values describe elliptically polarized output fields. The polarization
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degree can be calculated at each site (x, y). For sufficiently complex structures, usually

ρE(x, y) �= ρΨ(x, y) holds. Linearly polarized solutions with ρE(x, y) ≡ 0 are called

symmetric solutions since they can be reduced to the scalar equations by scaling all fields

by
√

1 + α. All other solutions are called asymmetric solutions. The latter can arise

from symmetric solutions of Eqs. (3.4)-(3.5) (which are symmetric under the permutation

of + and −) via spontaneous symmetry breaking. On the other side, this symmetry is

broken directly by the TE-TM splitting term. The polarization degree of the pump will

be denoted with ρp. For a linearly polarized pump, which is always the case in the present

work, it reads ρp = 0.

4.2. Analytical and numerical techniques

In order to get a comprehensive understanding of the polariton dynamics, we use a

combination of analytical and numerical techniques to solve the equations of motion.

Since the direct numerical simulation is very time-consuming and does not allow for a

complete understanding of the dynamics, it will be backed up with several analytical

calculations and a powerful method which allows us to find stationary solutions in the

vicinity of a known solution rather quickly.

4.2.1. Perturbation schemes for HSs

Methods of nonlinear dynamics and bifurcation theory providing an approximate descrip-

tion of the dynamics of the system in close vicinity of a bifurcation point are powerful

tools helping to understand the physics behind the simulated results and the underlying

principles. These analytical or semianalytical methods usually start from analytical

solutions of the respective equations of motion and contain a perturbation expansion

about these solutions. Therefore the results obtained by these methods are often only

valid in a close vicinity of the expansion point. The only analytically accessible solutions

are homogeneous solutions. Therefore they will be the starting points of all discussed

perturbation schemes.

The fields E, Ψ and their complex conjugate fields E, Ψ have to be treated independently

in the perturbation schemea. In the scalar case, a system of four equations arises from

this ansatz whereas in the vectorial case one generally gets a system of eight equations.

aAlternatively, one could regard the respective real and imaginary parts of E and Ψ as independent
quantities, which would lead to the same number of degrees of freedom.
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After linearizing in the perturbations the arising system of linear equations can be written

in matrix form.

The perturbation schemes can be adjusted to the symmetries of the expected solution.

These adjustments include both requirements on the amplitude of the perturbations and

on their dependence on the transverse coordinates. The stability of scalar HSs E0 and

Ψ0 with respect to other HSs can be probed by setting E = E0 + ε1e
λt, Ψ = Ψ0 + ψ1e

λt

and analogously for their complex conjugate fields with independent perturbations ε2 and

ψ2. As we will see in Sec. 5.2, |Ψ0| will be a reasonable choice for the order parameter.

By varying it, one can distinguish between stable modes with �λ(|Ψ0|) < 0 and unstable

modes with �λ(|Ψ0|) > 0. Together they form the characteristic S -shaped bistability

curve. This scheme also works in the vectorial case with eight independent perturbations

and two parameters |Ψ±
0 | which have to fulfill the equations of motion (3.15)-(3.16). The

set of these multistable HSs consists of symmetric and asymmetric HSs. The spontaneous

destabilization of symmetric HSs in favor of asymmetric HSs can be analyzed via the

antisymmetric perturbation scheme E± = E0 ± ε1e
λt, Ψ± = Ψ0 ± ψ1e

λt and analogously

for their complex conjugate fields containing only four independent perturbations.

So far, we solely considered spatially constant perturbation. Modulation instability of

HSs, which leads to the formation of spatially periodic patterns, can be probed by a

perturbation scheme including spatially periodic perturbations: E± = E0 +ε±
1 eλtei(kxx+kyy)

and analogously for Ψ± and their respective complex conjugate fields. Due to the symmetry

of the vectorial equations of motion without TE-TM splitting, a decomposition into a

symmetric and an asymmetric part is possible, cf. Subsec. 5.3.1. Adding the TE-TM

splitting breaks this symmetry. Therefore, the full eight-dimensional perturbation scheme

has to be solved, which is only possible semi-analytically, cf. Subsec. 5.3.4.

Whereas the aforementioned perturbation schemes are based on a Fourier decomposition

and therefore particularly suitable for the prediction of periodic patterns, they fail to

describes states without spatial periodicity such as solitons. Nevertheless, they can give

an important hint even in this case, since the coexistence of HSs and periodic pattern

arising from a subcritical bifurcation is a prerequisite for the existence of stable bright

solitons.

4.2.2. Split-step Fourier method for the full PDEs

More complicated solutions than HSs cannot be calculated analytically. Therefore they

have to be determined by numerically solving the equations of motion. A suitable tool for

the time evolution of nonlinear PDEs like the full equations of motion for exciton-polaritons
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4 Solutions of the equations of motion

is the given by the split-step Fourier method. In this pseudo-spectral method, the linear

and the nonlinear contribution are regarded separately. Whereas the nonlinear part is

solved in time domain using, e. g., a Runge-Kutta solver, the linear part containing the

transverse Laplacian can favorably be solved in Fourier domain and then back-transformed.

Eventually, both sub-steps are shifted by a half time step and therefore leapfrog each

other. The numerical Fourier transform can be calculated relatively fast using the fast

Fourier transform (FFT). Therefore, the split-step Fourier method can outperform typical

finite-difference methods in terms of velocity and precision. Since we are interested in

stationary solutions, we usually run the code until the solution reaches a steady state.

4.2.3. Newton iterative method for stationary solutions of the PDEs

Once a stationary solution is found with the help of the methods mentioned above, one

can often find another solution nearby by slightly varying the pump power and then

solving the system of linear equations arising from the spatial discretization with high

precision using the Newton-Raphson method. This continuation technique relies on

the fact that basically all solutions (HSs, patterns, solitons) can be regarded as points

lying on a surface in the phase space spanned by the dynamical variables. Therefore

they form branches with, e. g., the pump power as parameter. An important feature

of this method is the possibility to produce solutions which would be unstable if one

tries to simulate them directly with the split-step algorithm, which is in any case very

time-consuming. Rotationally symmetric two-dimensional solutions such as stationary 2D

solitons can be treated as quasi-one-dimensional solutions with this method by applying

polar coordinates and transforming the transverse Laplacian to ∂2
x + ∂2

y = ∂2
r + 1

r
∂r. The

stability of the solutions against perturbations lying in the same phase subspace can be

determined from the eigenvalues of the Jacobian. In this manner, this method contributes

to a more complete understanding of the system’s dynamics. However, the size of the

arising Jacobian matrix does not allow for generic two-dimensional solutions, but only

for one-dimensional and rotationally symmetric two-dimensional ones. Therefore it will

mainly be applied to one- and two-dimensional solitons and to domain walls, whereas for

periodic patterns we have to rely on direct simulations.

4.3. Chapter summary and concluding remarks

This chapter links the previous with the subsequent chapters. Starting from the equations

of motion we develop a typology of their solutions and their discrete symmetries. We

32



4 Solutions of the equations of motion

will distinguish between HSs, periodic patterns, cavity solitons and domain walls. In the

vectorial case, symmetric and asymmetric solutions are possible and have equal rights, as

long as the discrete symmetry between the two polarizations in the equations of motion is

preserved. Since the TE-TM splitting breaks this symmetry, it enforces the formation of

asymmetric solutions.

Then we presented several analytical and numerical solution techniques. In principle,

the HSs can be calculated analytically both in the scalar and in the vectorial case. A

perturbation scheme with spatially periodic perturbations then reveals the parameter

range of modulation instability. The general equations of motion can be solved numerically

by means of a split-step Fourier method. Stationary solutions can also be found via a

Newton iterative solver. This method applies mainly to one-dimensional solutions and

rotationally symmetric two-dimensional solutions. It allows the determination of branches

depending on a parameter and generally consisting of both stable and unstable solutions.
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5. Properties of homogeneous solutions

The easiest solutions of the partial differential equation describing the dynamics of uni-

formly pumped exciton-polaritons in the two-dimensional transverse plane are stationary

plane waves. Since their modulus is independent on both the time and the transverse

space coordinates, they are usually termed homogeneous solutions (HSs). This chapter

gives an overview over various properties of HSs. The linear properties of HSs are reflected

in the linear polariton dispersion relation presented in Sec. 5.1. The two-branch nature

of this dispersion relation is rather extraordinary and gives rise to various characteristic

effects. The TE-TM splitting of the cavity modes is also reflected in a splitting of the

dispersion relation. A meaningful expression for the experimentally observed nonlinear

blueshift of the linear dispersion relation will be calculated later in the framework of the

perturbation analysis in Sec. 5.3. A typical property of cavities with Kerr nonlinearity is

the bistable dependence of the fields on the input power. The additional consideration

of the spin degree of freedom leads to an even richer variety of coexisting HSs which

is termed multistability and dealt with in Sec. 5.2. By adding small perturbations to

the HS, one can probe its stability with respect to solutions sharing the structure of

these perturbations. This is an extremely powerful tool for the analytical prediction of

bifurcations of the solutions and their dependence on the physical parameters, especially

on α and β in Eqs. (3.15)-(3.16) which mix + and − polaritons.

HSs can give useful hints for the properties of spatially inhomogeneous solutions discussed

in the following chapters. The existence range of the extended spatially periodic patterns

discussed in Chapt. 6 can be predicted by analyzing the modulation instability (MI)

of the HSs with respect to spatially periodic perturbations, cf. Sec. 5.3. The analysis

presented in this section is taken from our publications [163, 164]. Also the solitons in

Chapt. 7 always nest on a HS background and therefore inherit several properties of this

background. Especially, the dependence of the solutions on the cross-phase modulation

parameter α is predicted by means of a perturbation analysis of the HSs. These results

were presented for the first time in our work [165]. The multistability of HSs presented in

Sec. 5.2 leads to a competition between various HSs where they coexist. The dynamics of

the arising one-dimensional domain walls between different HSs are discussed in Chapt. 8.
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5 Properties of homogeneous solutions

5.1. Dispersion relation

Since exciton-polaritons are composite quasiparticles formed by the strong coupling of

excitons and cavity photons, one could expect their dispersion relation to inherit properties

of both components. We will see, that the actual polariton dispersion relation arising

from the anticrossing of these two dispersion relations shows an even richer behavior

with both a photonic and an excitonic limiting case. Furthermore we will see that linear

pseudospin properties such as TE-TM splitting will also be reflected in a further splitting

of the linear dispersion relation.

5.1.1. Linear dispersion relation and Hopfield coefficients

Figure 5.1: Linear dispersion relation of scalar exciton polaritons: The upper polariton branch
ΔUPB(k) and lower polariton branch ΔLPB(k) (bold black lines) arise from the anticrossing of the
excitonic dispersion relation Δexc(k) and the photonic dispersion relation Δcav(k) (dashed red lines);
their splitting at k = 0 amounts to twice the Rabi frequency ΩR.

According to the derivation of the spinless equations of motion (2.13)-(2.14) the excitons

have a plane dispersion relation , i. e., ωexc(k) = const with k2 = k2
x + k2

y. This approx-

imation uses the fact that the effective mass of the excitons is 104 to 105 times bigger

than that of the cavity photons so that it can sufficiently well approximated by its value

for k = 0. This approximation is valid as long as one stays sufficiently far away from the

excitonic resonance. However, in order to describe processes like soliton formation above

the excitonic resonance correctly, it would be necessary to include the parabolic exciton

dispersion into the equations of motion [144–146]. In the following, the origin of the

ordinate will be shifted into the excitonic resonance. Hence, all dispersion relations will

not display the k dependence of the frequencies but rather that of the respective detunings.

Furthermore, we switch to dimensionless quantities by scaling all frequencies with the Rabi
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frequency ΩR. This procedure is consistent with the scaling of the equations of motion

(2.13)-(2.14). The excitonic dispersion relation can then be simplified to Δexc(k) = 0. The

photonic dispersion relation, however, is parabolic , i. e., their frequency or rather their

detuninga depends quadratically on the transverse wave vector: Δcav(k) = k2 in suitably

scaled coordinates. Both dispersion relations are shown by dashed red lines in Fig. 5.1.

In the previous chapter, the equations of motion were derived for excitons coupled to

cavity photons. They are normal modes of the quantum well and the empty cavity,

respectively. The normal modes of the coupled system, however, are exciton-polaritons.

In the following, we want to derive their dispersion relation, i.e., the relation between the

detuning Δ(k) and the transverse wave vector k. In the linear limit, it can be obtained by

inserting {E, Ψ} ∝ p(k) exp (−γt + i (kr−Δ(k)t)) into Eqs. (2.13)-(2.14) and dropping

both the pump term and the nonlinearity. This leads to an eigenvalue problem with

vector p(k) = {ek, ψk} and eigenfrequency Δ(k). Solving the eigenvalue equation yields

the two branches of the linear dispersion relation,

ΔUPB,LPB(k) =
k2 ±√4 + k4

2
, (5.1)

where ΔUPB(k) and ΔLPB(k) refer to the upper and lower polariton branch, respectively,

cf. the bold black lines in Fig. 5.1. The upper polariton branch ΔUPB(k) is photon-like.

The lower polariton branch ΔLPB(k) is also photon-like around k = 0 and approaches the

excitonic resonance for large values of k thus becoming exciton-like. In the intermediate

range it experiences a change of its curvature leading to several effects characteristic for

exciton-polaritons such as the formation of stable bright solitons [166–168]. At k = 0, the

separation between the two branches amounts to δΔ = ΔUPB(0) −ΔLPB(0) = 2. It is

called Rabi splitting and always equals twice the Rabi frequency: δω = 2ΩR, cf. Fig. 5.1.

The components of the vector p(k) denote the photonic component ek and the excitonic

component ψk of the respective branch. They can be calculated to

e2
k =

1

1 + (k2 −ΔUPB,LPB(k))2 and ψ2
k = 1− e2

k. (5.2)

They are also known as Hopfield coefficients [143]. The polariton dispersion curve can

be determined experimentally via angle-resolved photoluminescence experiments, cf. Ref.

[169]

aIt should be noted that the detuning from the pump frequency may include a constant shift which is
chosen zero in this case. This choice corresponds to Δc = Δ0 in the equations of motion (2.13)-(2.14),
which will actually be applied in most of the numerical simulations.
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5.1.2. TE-TM splitting of the linear dispersion relation

Pseudospin effects linked with the parameter α in Sec. 3.1 solely appear in the nonlinear

terms of the equations of motion. Hence they do not influence the linear dispersion relation

discussed in this section. The TE-TM splitting of the cavity modes, however, is a linear

effect and therefore has an impact on the linear dispersion relation. It causes a TE-TM

splitting of both branches, which can be expressed by the substitution k2 → k̃2 = k2 (1± β)

in Eq. (5.1). The TE-TM split polariton branches then read

Δ±
UPB(k) =

k2 (1± β) +
√

4 + k4 (1± β)2

2
(5.3)

and

Δ±
LPB(k) =

k2 (1± β)−
√

4 + k4 (1± β)2

2
. (5.4)

They are shown in Fig. 5.2(a). It is remarkable that the dispersion relation remains

Figure 5.2: (a) TE-TM split upper branch ΔUPB(k) and lower branch ΔLPB(k) of the linear
dispersion relation of exciton polaritons, (b) TE-TM splitting δΔLPB(k) of the lower polariton
branch. The splitting parameter was chosen β = 0.05

isotropic in the kx − ky plane, although the original equations of motion (3.15)-(3.16)

do not exhibit this symmetry. A very good approximationb for the TE-TM splitting

δΔUPB = Δ+
UPB−Δ−

UPB of the photon-like upper polariton branch is given by the formula

δΔUPB(k) ≈ βk2

(
1 +

k2

√
4 + k4

)
. (5.5)

It vanishes at k = 0, behaves like δΔUPB ∝ βk2 for small k and δΔUPB ∝ 2βk2 for

large k. The TE-TM splitting δΔLPB = Δ+
LPB −Δ−

LPB of the lower polariton branch is

bThe fact β � 1 is used in order to simplify the denominator.
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approximately given by

δΔLPB(k) ≈ βk2

(
1− k2

√
4 + k4

)
. (5.6)

Its course is shown in 5.2(b). It vanishes for k = 0, since in this case there is no TE-TM

splitting of the cavity modes. The TE-TM splitting of the lower polariton branch also

vanishes for k →∞, since in that case, the excitonic effects dominate the photonic ones.

It takes its maximum at about k = ±1.25.

5.2. Multistability

After having examined the linear properties of HSs in the previous section, we will

include the pump and the repulsing instantaneous Kerr-type nonlinearity arising from the

exciton-exciton interaction into our considerations. For the scalar case described by Eqs.

(2.13)-(2.14), the output fields E, Ψ show a bistable dependence on the pump power, as

long as f(Δ) > 0 for [100, 170]

f(Δ) = Δ
(
Δ2 + γ2

c − 1
)
−
√

3γ0

(
Δ2 + γ2

c +
γc

γ0

)
. (5.7)

This means that the equations (2.13)-(2.14) exhibit bistable HSs for −0.79516 < Δ <

−0.18994 for γ0 = γc = 0.1. The black lines in Fig. 5.3(a) and (b) show the square of the

absolute value of the bistable symmetric HSs |Ψ±| of the vectorial equations (3.4)-(3.5)

with Δ = −0.7 for the cases α = 0.1 and α = 0.2, respectively. These symmetric HSs

arise from the scalar HSs by scaling all fields and the pump with
√

1 + α. The solid lines

always denote stable solutions whereas unstable solutions are marked with dashed lines.

The stability of a HS with respect to other HSs can be probed by adding an arbitrary

small perturbation with time dependence ∝ eλt to it and solving the eigenvalue problem

arising from the respective equations of motion. If all eigenvalues have a negative real

part, the HS is stable. If at least one eigenvalue has a positive real part the HS is unstable.

This perturbation scheme works also for the asymmetric HSs discussed in the following.

Apart from these symmetric HSs, the spin degree of freedom gives rise to asymmetric

HSs corresponding to an elliptically polarized photonic component. They bifurcate

from the symmetric HSs when the latter become unstable with respect to antisymmetric

perturbations. This destabilization can be examined by means of an adapted linear stability

analysis about the symmetric HSs E0 and Ψ0. We plug the ansatz E± = E0 ± ε1e
λt,

Ψ± = Ψ0 ± ψ1e
λt and analogously for their complex conjugate fields E

±
= E0 ± ε2e

λt,
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5 Properties of homogeneous solutions

Figure 5.3: Left panel ((a) and (b)): Intensity of symmetric (black) and asymmetric (red) HSs vs.
the external pump power Ep for (a) α = 0.2 and (b) α = 0.1 and a detuning of Δ = −0.7, solid and
dashed lines mark stable and unstable solutions, respectively; bifurcation points I±

0 according to Eq.
(5.9); (c) multistable pump range Ep vs. detuning Δ for various values of the nonlinear coupling
parameter α; (d) critical α according to Eq. (5.10) where the asymmetric HS bifurcates from the
symmetric one as a function of the detuning Δ.

Ψ
±

= Ψ0 ± ψ2e
λt into the equations of motion (3.4)-(3.5). Note that the perturbations ε1

and ε2 have to be treated as independent quantities and are not necessarily the complex

conjugate of each other. The same holds for ψ1 and ψ2. Furthermore, this ansatz solely

takes into account the polarization symmetry breaking instability and disregards any

other destabilization mechanisms known already for the one-component systems [24, 170]

as, e.g., modulational instability. However, these mechanisms will be regarded extensively

in Sec. 5.3 both for the scalar and the vectorial case. After linearizing all equations in

the perturbations we get the eigenvalue equation

⎛⎜⎜⎜⎜⎜⎜⎝
−γc + iΔc 0 i 0

0 −γc − iΔc 0 −i

i 0 −γ0 + iΔ0 − 2i |Ψ0|2 −i (1− α) Ψ2
0

0 −i i (1− α) Ψ
2

0 −γ0 − iΔ0 + 2i |Ψ0|2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ε1

ε2

ψ1

ψ2

⎞⎟⎟⎟⎟⎟⎟⎠ = λ

⎛⎜⎜⎜⎜⎜⎜⎝
ε1

ε2

ψ1

ψ2

⎞⎟⎟⎟⎟⎟⎟⎠ .

(5.8)
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The behavior of the perturbations is governed by the eigenvalue with the largest real

part, which will be denoted with �(λ). The perturbations are damped for �(λ) < 0

whereas they grow exponentially with time for �(λ) > 0. Therefore setting λ = 0 in the

corresponding characteristic equations of the eigenvalue problem leads to an equation

describing the bifurcation points where the symmetric HS destabilizes in favor of the

asymmetric HSs (marked with I+
0 and I−

0 in Fig. 5.3(a) and (b)). This approach is valid,

since stationarity (or time-independence) of the asymmetric HS solution requires that the

imaginary part of λ also vanishes close to the bifurcation point. The arising second-order

equation for the HS intensity I0 = |Ψ0|2 yields the solutions

I±
0 =

−2B ±
√

4B2 − (4− (1− α)2) (B2 +A2)

4− (1− α)2
, (5.9)

where A = γ0 + γc/(γ2
c + Δ2

c) and B = −Δ0 + Δc/(γ2
c + Δ2

c). It can be seen from Figs.

5.3(a) and (b) that the existence range of asymmetric HSs gets smaller with increasing

value of α. It finally vanishes completely above a critical value α = αcrit where both

bifurcation points coincide. This value is given by

αcrit = 1− 2|A|√A2 + B2
. (5.10)

The value αcrit is shown in Fig. 5.3(d) as a function of the frequency detuning. The

existence interval of the asymmetric HS becomes broader for decreasing value of α, which

can be seen by comparing the red curves in Figs. 5.3(a) and (b). For α = 0, it reaches

the limiting points of the bistability curve. Note that for vanishing α the equations

for the right and left polarization are uncoupled and, as a consequence, the polaritons

with opposite spins can be switched on independently in the upper state of the bistable

curve. In other words, each of the three polarizations, namely, the right-elliptical, the

left-elliptical and the linear one, can be excited with a linearly polarized pump beam.

This polarization multistability of HSs is also ubiquitous for the more realistic case of

a negative nonlinear coupling parameter α < 0. Moreover, the interval of polarization

multistability exceeds the bistability domain of symmetric HS with the linearly polarized

photonic component, as it is shown in Fig. 5.3 (c).

The dependence of the polarization degree of the output fields on the pump is studied

in Refs. [171–173] for an elliptically polarized pump. Our approach is different, since

we want to observe the transition from a symmetric state to a spontaneously broken

asymmetric state applying a linearly polarized pump (ρp = 0). The multistability of

polaritonic spin ensembles was also studied in Refs. [159, 174–176].
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5.3. Modulation instability

In the preceding section, we investigated the properties of multistable HSs of the various

equations of motion. We used two simple perturbation schemes to investigate the stability

of HSs with respect to other HSs in general and especially we examined the destabilization

of symmetric HSs in favor of asymmetric HSs using an adapted perturbation scheme. The

HSs can furthermore be destabilized by the interplay between two competing processes:

on the one hand there is the cross-talk mechanism between different sites mediated by the

photon diffraction which tends to restore the spatial uniformity in the transverse plane

and on the other hand the nonlinearity causes the amplification of spatial inhomogeneities.

The interplay between these two processes generates an instability that is often termed

Turing instability honoring the pioneering work of Turing [177]. Throughout this work,

the synonymous denotation modulation instability (MI) will be used. In order to excite

these instabilities, it is necessary that a control parameter, e. g., the pump power, exceeds

a threshold value. This critical value is then also termed Turing destabilization point or

MI point. A brief overview over the early history of MI is given in Ref. [7].

It is reasonable to regard the vectorial equations without TE-TM splitting and with

TE-TM splitting separately. The former allow the deduction of various useful analytical

formulae. Especially, they include the scalar problem as a symmetric special case. The

latter, however, have to be treated partly numerically.

5.3.1. Perturbation scheme for the spin-dependent case without

TE-TM splitting

We consider symmetricc HSs E+
0 = E−

0 =: E0 and Ψ+
0 = Ψ−

0 =: Ψ0 of the vectorial

equations (3.4)-(3.5). The common scheme for spatially varying perturbations on top of

the HSs and their complex conjugate fields E0 and Ψ0 reads as

E± = E0 + ε±
1 eλtei(kxx+kyy),

E± = E0 + ε±
2 eλte−i(kxx+kyy),

Ψ± = Ψ0 + ψ±
1 eλtei(kxx+kyy),

Ψ± = Ψ0 + ψ±
2 eλte−i(kxx+kyy), (5.11)

cRestricting the MI analysis to symmetric HSs is natural, since the solutions can be expected to inherit this
property from the applied pump. It is also a prerequisite for the pattern formation discussed in Chapt. 6,
where we will also solely cope with patterns driven by a linearly polarized pump and thus nesting on a
linearly polarized HS. The extension to asymmetric HSs would be possible and straightforward.
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where the perturbation amplitudes ε1, ε2, ψ1, ψ2 are independent in the ansatz (5.11).

Since the equations of motion are isotropic in the x-y plane, all quantities depend only on

the squared modulus k2 = k2
x + k2

y of the transverse wave vector k = (kx, ky)t rather than

on its very components. The quantity |Ψ0| and the related excitonic intensity I0 = |Ψ0|2
are suitable candidates for the system’s control parameter rather than the pump power.

Plugging the ansatz (5.11) into the equations of motion (3.4)-(3.5) and linearizing the

occurring equations in the perturbations leads to a homogeneous system of eight algebraic

equations, which can be formulated as an eigenvalue problem in λ. It decouples into a

symmetric (ε−
i = ε+

i , ψ−
i = ψ+

i , for i = 1, 2) and an antisymmetric (ε−
i = −ε+

i , ψ−
i = −ψ+

i ,

for i = 1, 2) part. This decoupling was also reported for vectorial Kerr cavities [81]. It

originates from the invariance of the equations of motion (3.4)-(3.5) under the permutation

of + and − fields. This symmetry will be broken directly by the TE-TM splitting in Eqs.

(3.15)-(3.16). Therefore the eigenvalue problem arising in that case will not decouple and

is thus much harder to tackle.

The separation of symmetric and antisymmetric modes simplifies the further analytical

considerations significantly, since the 8-by-8 eigenvalue matrix decouples into two 4-by-4

matrices for the symmetric and the antisymmetric part, respectively, which can be treated

independently. The matrix of the symmetric eigenvalue problem reads

⎛⎜⎜⎜⎜⎜⎜⎝
−γc + iΔ̃c 0 i 0

0 −γc − iΔ̃c 0 −i

i 0 −γ0 + iΔ0 − 2i (1 + α) |Ψ0|2 −i (1 + α) Ψ2
0

0 −i i (1 + α) Ψ
2

0 −γ0 − iΔ0 + 2i (1 + α) |Ψ0|2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(5.12)

where Δ̃c = Δc − k2
x − k2

y. The asymmetric eigenvalue problem can be obtained by

substituting Δc with Δ̃c in Eq. (5.8). Note, that the matrices in Eq. (5.8) and Eq. (5.12)

differ only in the lower right quadrant which describes the exciton-exciton interaction.

The implications of this difference will be discussed in the following section.

5.3.2. Growth rates

Both eigenvalue problems can now be solved independently. As long as the real part of all

four eigenvalues is negative, the HS is stable with respect to the regarded perturbations.

When the control parameter exceeds its critical value, at least one of these eigenvalues

exhibits a positive real part for a certain k = |k|. This quantity is denoted as growth

rate. Here one has to distinguish between the growth rate �λs(k, |Ψ0|) for symmetric

modes and �λas(k, |Ψ0|) for asymmetric ones. The maximum of these two growth rates
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Figure 5.4: Modulation instability of the vectorial equations of motion (3.4)-(3.5) for α = 0.1
and Δ = −0.1: (a) HS branches |Ψ±| over the pump power Ep: stable symmetric HSs (bold black
lines) and MI range (red dashed line); (b) growth rate �λ(k, |Ψ0|), boundary of instability range
�λ(k, |Ψ0|) = 0 (red line) and stable domain �λ(k, |Ψ0|) < 0 (white area); (c) maximal growth
rates �λs(k, |Ψ0|) and �λas(k, |Ψ0|) for a given order parameter |Ψ0| of symmetric (thin red) and
antisymmetric (bold blue) perturbations, respectively; the dashed white line in (b) shows the position
of �λmax(k, |Ψ0|) in the k-|Ψ0| plane. Horizontal dashed lines denote the onset and the cessation of
the modulational instability; |Ψ±

0,crit| and k± are calculated in Eqs. (5.14) and (5.16), respectively.

can be denoted as (global) growth rate �λ(k, |Ψ0|). Periodic solutions of Eqs. (3.4)-(3.5)

are amplified, if their wave vector obeys the condition �λ(k, |Ψ0|) > 0. This leads to the

spontaneous formation of spatial patterns growing from a modulationally unstable HS.

For α > 0, the growth rate of the symmetric modes always exceeds that of the asymmetric

modes: �λs(k, |Ψ0|) > �λas(k, |Ψ0|). This scenario is shown exemplarily for α = 0.1 and

Δ = −0.1 in Fig. 5.4. For this detuning, the symmetric HSs are monostable, cf. Fig.

5.4(a). The growth rate �λ(k, |Ψ0|) = �λs(k, |Ψ0|) is shown in Fig. 5.4(b). The branch

of modulationally unstable HSs is denoted with a red dashed line in Fig. 5.4(a). For

each value of the control parameter |Ψ0|, there is a value of the wave vector k, where

the growth rate takes its maximum �λmax. The k value at �λmax determines the typical

period of the arising pattern. We can see from Fig. 5.4(c), that the maxima of �λs(k, |Ψ0|)
are larger than the maxima of �λas(k, |Ψ0|) for all values of |Ψ0|. Therefore all arising

patterns are expected to be governed by the dynamics arising from the symmetric modes.

The spontaneous formation of patterns for this choice of parameters is studied in Subsec.

6.2.1.

Symmetric solutions emerge from the scalar solution by scaling all fields with
√

1 + α.

Thus, the growth rates for α = 0 display the general form of a symmetric growth rate.

After having already studied the case Δ = −0.1, we want to highlight two special cases

arising from different choices of the detunings.

Choosing Δ = −0.45 leads to bistable symmetric HSs, cf. Fig. 5.5(a)-(b). In this case,
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5 Properties of homogeneous solutions

Figure 5.5: Modulation instability of the scalar equations of motion (2.13)-(2.14). Left column:
HS branches for various detunings: stable HSs (solid black), unstable HSs (dashed black), MI
range (red dashed); right column: instability growth rates Reλ(k, |Ψ|): boundary of instability -
Reλ(k, |Ψ|) = 0 (black lines); stable domains - Reλ(k, |Ψ|) < 0 (white areas); 1st row:Δ = −0.45; (a)
the modulationally unstable pump range exceeds the bistability area, (b) at the critical intensity,
only patterns within a small k range can be excited; 2nd row: Δ = 0.1, (c) no bistability, wide MI
pump range, (d) large excitable k range at critical intensity can lead to beating of various patterns.

there is an additional |Ψ0| - range where the HS destabilizes against perturbations with

k = 0. It is widely believed that this does not lead to the formation of transverse patterns

but rather to a spontaneous switching to the stable upper branch of the bistability loop

and is therefore termed bistable frustration [79]. This range is indicated by a dashed black

line in Fig. 5.5(a). Scalar pattern formation at these parameters is studied in Subsec.

6.1.1.

By choosing a detuning slightly above the excitonic resonance, e.g., Δ = 0.1 as in Fig.

5.5(c)-(d) there is a wide range of excitable modes slightly above the onset of MI. Thus

there will be a competition between different patterns. This case is shown in Fig. 6.8.

For α < 0, the growth rate of the asymmetric modes always exceeds that of the symmetric

modes: �λas(k, |Ψ0|) > �λs(k, |Ψ0|). This scenario is shown exemplarily for α = −0.1

with detunings Δ = −0.45 in Fig. 5.6(a)-(c) and Δ = −0.1 in Fig. 5.6(d)-(f). At first,

the case Δ = −0.1 will be studied, where the symmetric HSs are monostable. Figure

5.6(e) displays the growth rate �λ(k, |Ψ0|) = �λas(k, |Ψ0|). The branch of modulationally

unstable HSs is shown by a blue dashed line in Fig. 5.6(d). For each value of the control
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Figure 5.6: Modulation instability of the vectorial equations of motion (3.4)-(3.5) for α = −0.1:
(a)-(c) Analysis of homogeneous solutions (HSs) with Δ = −0.45: (a) HS branches |Ψ±| over the
pump power Ep: symmetric HSs (bold black), asymmetric HSs (thin grey) and MI range (blue
chain line); continuous lines denote stable solutions, whereas dashed lines stand for unstable HSs;
(b) growth rate �λ(k, |Ψ0|), boundary of instability range �λ(k, |Ψ0|) = 0 (blue line) and stable
domain �λ(k, |Ψ0|) < 0 (white area); (c) maximal growth rates �λs(k, |Ψ0|) and �λas(k, |Ψ0|) for a
given order parameter |Ψ0| of symmetric (thin red) and antisymmetric (bold blue) perturbations,
respectively; the dashed white line in (b) shows the position of �λmax(k, |Ψ0|) in the k-|Ψ0| plane.
Horizontal dashed lines denote the onset and the cessation of the modulational instability; (d)-(f)
show the respective figures with Δ = −0.1.

parameter |Ψ0|, there is a value of the wave vector k, where the growth rate takes its

maximum �λmax. The k value at �λmax determines the typical period of the arising

pattern. In Fig. 5.6(f) we show that the maxima of �λas(k, |Ψ0|) are larger than that

of �λs(k, |Ψ0|) for all values of |Ψ0|. Therefore all arising patterns are expected to be

governed by the dynamics arising from the antisymmetric modes.

Figure 5.6(a)-(c) shows �λ(k, |Ψ0|) for Δ = −0.45. Like in the scalar case, there is a

|Ψ0| range where the HS destabilizes against perturbations with k = 0, cf. the dashed

black line in 5.6(a). The formation of vectorial patterns in this parameter range will be

discussed in Subsec. 6.2.2 with the help of Fig. 6.13. Vectorial effects in the deep bistable

regime Δ = −0.7 shall be studied in Subsec. 6.2.3.
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5.3.3. Analysis at the critical intensity

One can conclude, that for α < 0 (α > 0) there is a critical |Ψ0| range, where preferably

asymmetric (symmetric) modes are amplified. In the following, analytical expressions for

the respective critical quantities will be derived. For symmetric perturbations, the critical

intensityd I±
0,crit,s at the Turing instability points amounts to

I±
0,crit,s =

1 + 4γcΔ0 ±
√

1− 4γc(3γ0 (1 + γ0γc)−Δ0(2 + γcΔ0))

6γc(1 + α)
, (5.13)

whereas for antisymmetric perturbations we get

I±
0,crit,as =

1− α + 4γcΔ0 ±
√

(1− α + 4γcΔ0)
2 − 4(3− α)(1 + α)γc (γ0 + γ2

0γc + γcΔ2
0)

2(3− α)(1 + α)γc

.

(5.14)

The wavevectors of the symmetric perturbations at their bifurcation point fulfill the

relation

(
k±

s

)2
= Δc +

1 + 2γ0γc ∓
√

1− 4γc(3γ0 (1 + γ0γc)−Δ0(2 + γcΔ0))

2(2γ0 −Δ0)
, (5.15)

whereas for antisymmetric perturbations at the respective bifurcation point they read

(
k±

as

)2
= Δc+

(1− α)(1 + 2γ0γc)∓
√

(1− α + 4γcΔ0)2 − 4(3− α)(1 + α)γc(γ0 + γ2
0γc + γcΔ2

0)

4γ0 − 2(1− α)Δ0

.

(5.16)

Equations (5.13) and (5.14) are only valid if (k±
s )2 ≥ 0 and (k±

as)
2 ≥ 0, respectively. For

detunings which would lead to (k±
s )2

< 0 ((k±
as)

2
< 0), we have to set (k±

s )2 = 0 ((k±
as)

2 = 0).

Then the critical intensity I+
k=0,crit,as at the upper bifurcation point is identical to I+

0 in

Eq. (5.9) in case of antisymmetric perturbations. In case of symmetric perturbations, the

critical intensity reads

I+
k=0,crit,s =

−2B +
√B2 − 3A2

3(1 + α)
, (5.17)

with A and B as in Eq. (5.9). It should be noted that both I+
k=0,crit,s and I+

k=0,crit,as depend

on Δc, whereas I±
0,crit,s and I±

0,crit,as do not. This stunning fact can be explained by taking

a closer look on the derivation of the critical values for k �= 0. The transverse wave vector

and the cavity detuning appear only in the combination Δ̃c = Δc − k2. This suggests the

interpretation that the detuning from the cavity resonance is compensated by the nonzero

dIt should be mentioned that throughout this section, all intensities I0 = |Ψ0|2 refer to the excitonic
component of the intensity. Furthermore, it is important to note, that in Eqs. (5.13)-(5.16), the −/+ signs
do not refer to the exciton spin but to the lower and upper destabilization point of the HSs, respectively.

47



5 Properties of homogeneous solutions

wave vector of the arising patterns [79]. Thus these critical intensities do not depend on

the effective quantity Δ̃c at all. I+
k=0,crit,s is the (scaled) upper boundary of the bistable

symmetric HS. On the other side, I+
k=0,crit,as exceeds this range for α < 0, as can be seen

in Fig. 5.7(b). This is due to the destabilization of symmetric HSs in favor of asymmetric

HSs.

Figure 5.7: Results of the perturbation analysis of homogeneous solutions: (a) Lower branch of
the linear polariton dispersion relation (black), wave vector (k±

s ) of the perturbations at the critical
intensity I±

0,crit,s as a function of the detuning Δ (red) and (k±
as) of the periodic perturbation at

the critical intensity I±

0,crit,sa as a function of the detuning Δ (blue); (b) intensity I−

0,crit,as at the

lower bifurcation point and I+
0,crit,as at the upper bifurcation point as a function of the detuning

Δ for α = −0.1 (bold blue lines); within the region encircled by the thin solid black curve also
perturbations with k = 0 are unstable; the dashed black lines frame the range between the turning
points of the bistability loop for symmetric HSs; (c) critical intensity for symmetric (thin red) and
antisymmetric perturbations (bold blue) as a function of α for Δ0 = −0.45.

The main results of the above analysis are illustrated in Fig. 5.7. The curve of expected

wave vectors of the patterns lies well above the branch of the linear dispersion relation,

cf. Fig. 5.7(a). Since the former was derived from the full nonlinear equations, it can

be interpreted as a dispersion relation with nonlinear blueshift. The implicit expression

Δ(k−) is represented by the red (blue) line for symmetric (antisymmetric) perturbations in

Fig.5.7(a). However, it should be noted, that the perturbation analysis is only valid close

to HSs. The horizontal asymptote of the lower branch of the nonlinear dispersion relation

lies at Δ0 = 2γ0 (Δ0 = 2γ0/(1− α)), which is Δ = 0.2 (Δ = 0.2222) for our choice of the

damping constants and α = −0.1. Its minimum lies at Δ = −0.78462 (Δ = −0.809945).

Thus, no patterns are expected below these detunings. The full analytical expression for

these minima is very cumbersome and therefore not included here.

Figure 5.7(b) displays the full instability landscape for negative α. The intensity range

between the inflection points of the bistability loop for symmetric HSs is framed by the

dashed black contour. It is included in the range of symmetric HSs being unstable with

respect to uniform perturbations which is calculated from Eq. (5.9) and depicted by a

solid black contour. The bold blue lines denote the critical intensities I±
0,crit,as according
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to Eq. (5.14) in their existence range.

In Fig. 5.7(c), we plotted the critical intensity I−
0,crit over α at Δ0 = −0.45 for both

symmetric and antisymmetric perturbations. It can be seen that for α > 0 the MI point

for symmetric perturbations lies at a smaller pump power than that of the antisymmetric

perturbations. This means, that the arising patterns can be expected to be symmetric

(ρE(x, y) ≡ 0) and each polarization is similar to the scalar hexagonal patterns from Ref.

[163]. For α < 0, however, the bifurcation point for antisymmetric perturbations lies at

a smaller pump power than that for the symmetric ones. In Sec. 7.2, we will prove for

dark solitons that these antisymmetric dynamics are reflected in a spatial effect, namely

in the spatial separation of the two vector solitons formed in + and − polarization [165].

For hexagonal patterns, this spatial breakup is also expected to appear in the form of

two spatially shifted + and − patterns. The polarization degree ρE(x, y) is then also

nontrivial [164].

5.3.4. Perturbation theory for the spin-dependent case with TE-TM

splitting

Figure 5.8: Growth rate �λ(kx, ky) at |Ψ0| = 0.37181, corresponding to Ep = 0.282; the closed
white curves denote �λ(kx, ky) = 0; parameters are chosen Δ = −0.45, α = −0.1 and β = 0.05.

Additionally taking into account the TE-TM splitting contribution in the equations

of motion changes the nature of the perturbation scheme drastically. Since the term

proportional to β breaks the pseudospin symmetry of the system directly, the above

mentioned splitting of the eigenvalue problem into a symmetric and an antisymmetric

part is no longer possible. Thus, the arising characteristic equation is of 8th order and

does no longer exhibit feasible roots. Therefore, the growth rates have to be determined

numerically. Since the isotropy in kx-ky plane is broken by the TE-TM splitting, the

growth rates will depend not only on k2 = k2
x + k2

y but on the very components kx and ky

thus showing a direction dependence in the transverse momentum plane. This is shown
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exemplarily in Fig. 5.8 for Δ = −0.45, α = −0.1, and β = 0.05. A pump power of

Ep = 0.282 leads to |Ψ0| = 0.37181 for the HSs. The occurrence of a spatial anisotropy

for the stimulated amplification of polaritons in a perfectly isotropic microcavity was

also observed in Ref. [178]. This spontaneous breaking of the isotropy was explained by

the combination of the TE-TM cavity-mode splitting and the spin-dependent polariton-

polariton scattering processes. In the framework of hexagonal pattern formation, the

interplay of these two effects will lead to a spontaneous movement of the entire pattern,

cf. Ref. [179] and Sec. 6.3. The anisotropy arising from the TE-TM polarization splitting

can be used to generate optical beams carrying orbital angular momentum [180].

5.4. Chapter summary and concluding remarks

In this chapter, both the linear and nonlinear properties of homogeneous solutions of the

equations of motion derived in Chapts. 2 and 3 were investigated.

The linear dispersion relation of spinless exciton-polaritons consists of two distinct branches.

The nonlinearity causes a blueshift of both branches, which we calculated for spatially

periodic perturbations at their bifurcation point. The TE-TM splitting between the

cavity modes is inherited by the linear dispersion relation. Whereas the splitting of the

photon-like upper polariton branch increases with the wave vector k, the splitting of the

lower polariton branch vanishes for both k = 0 and k →∞ and approaches its maximum

in between. It is important to note that the splitting of both branches is isotropic in the

transverse plane despite originating from an anisotropic effect.

For appropriate choice of the detunings, the symmetric HSs show a bistable dependence

on the pump power. We calculate a critical value for α, where asymmetric HSs bifurcate

from these symmetric HSs. Together they form a set of multistable HSs, which is a typical

feature of nonlinear systems with spin.

Both symmetric and asymmetric HSs can destabilize in favor of spatially periodic solutions.

In our analysis we focused on periodic solutions nesting on a symmetric HS background.

The structure of the perturbation scheme and its solutions depends crucially on the

question whether one includes TE-TM splitting or not. Without TE-TM splitting, the

problem exhibits a discrete spin symmetry and therefore decomposes into a symmetric

and an asymmetric part. Whereas the symmetric part corresponds to the scalar problem,

the asymmetric part can predict the spontaneous symmetry breaking linked with α < 0.

Both regimes will be discussed extensively in the following chapters. By including TE-

TM splitting, however, the spin symmetry of the equations of motion is broken directly.

Furthermore, it causes an anisotropy in the transverse momentum plane.
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6. Dynamics of extended structures

The formation of spatially periodic patterns out of a thermodynamical equilibrium is

a universal phenomenon in many nonlinear systems. It has therefore been a subject of

vigorous scientific efforts in various areas of research such as convection processes, solid

state physics, chemical reaction dynamics, nonlinear optics, and various self-assembled

biological systems [7–11, 181]. Patterns can arise spontaneously when the interplay

between nonlinearity and a cross-talk mechanism at different sites (e.g. diffraction or

diffusion) destabilizes a spatially uniform field distribution. With the help of methods

of nonlinear dynamics as described in Sec. 4.2 and performed in Sec. 5.3, one gets

an analytical approach to the nature of this destabilization process and the bifurcation

dynamics of the arising patterns.

The aforementioned requirements are met in many nonlinear optical systems, such as

nonlinear media with counter-propagating waves [62–64] or other passive and active

nonlinear optical systems [65–71]. The most investigated systems in optical pattern

formation, however, are cavities filled with a nonlinear medium [72–84]. Besides being of

own interest, the study of nonlinear optical cavities (especially with Kerr nonlinearity) is

an important prerequisite for the investigation of polaritons in a cavity [29, 30, 163, 164,

179, 182], since these two systems share several features. The feedback introduced by the

cavity (cf. Sec. 2.1) enhances nonlinear effects leading to a competition between several

unstable modes. Furthermore, the losses due to the mirrors introduce dissipation which

has to be compensated by an external pump. Another important requirement for the

spatial instability leading to transverse patterns is the existence of a detuning between the

frequency of the driving field and the cavity resonance. The emission of certain periodic

patterns is then favored, since the detuning is compensated by their wave vector, cf. the

passage after Eq. (5.17) in Subsec. 5.3.3. It has been shown, that vectorial effects which

naturally arise if one takes into account the polarization of light, can lead to additional

different structures including stripes and labyrinthine patterns. But the most common

type of patterns is of hexagonal type. The competition of various patterns and pattern

selection was addressed in Refs. [65, 79] in the framework of a passive Kerr cavity driven

in the bistable regime. Using a weakly nonlinear theory, hexagonal patterns were proven

to be the most stable ones in the vicinity of the Turing instability point. This statement

is valid beyond that special case. For subcritically bifurcating hexagonal patterns in the

Lugiato-Lefever regime, they will have a finite amplitude even at the threshold pump
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power.

The conditions for spontaneous pattern formation were derived in Sec. 5.3. Based on

this analysis we organize this chapter as follows: In Sec. 6.1 the scalar model is analyzed

according to our publication [163]. Special emphasis is placed on the influence of the

detunings on the shape and the existence range of patterns. In Sec. 6.2 we additionally

take into account the exciton spin. The most important parameter is then naturally the

cross-phase modulation parameter α, since it is responsible for the spatial shift between

the two polarizations. These results have been presented in our paper [164]. In Sec. 6.3

the influence of the TE-TM splitting on the vectorial patterns will be discussed according

to our publication [179].

6.1. Scalar polariton patterns

The formation of spatial patterns in dissipative nonlinear optical systems has been a topic

of vigorous interest since the introduction of a paradigmatic model [72] by Lugiato and

Lefever in 1987. Since then, the Kerr cavity has become by far the most studied model

for pattern formation in nonlinear optics [78–84]. Besides its experimental relevance, the

scalar Kerr cavity is of special theoretical importance, since its structure is comparably

easy and therefore it allows for an extensive analysis of the destabilization of HSs. This

analysis contains both the destabilization in favor of spatially periodic perturbations

analog to Sec. 5.3 and amplitude equations adapted to the expected shape of the final

patterns. Depending on the relative sign between the diffraction term and the nonlinearity

one distinguishes between focussing and defocussing nonlinearity. The nature of this

nonlinearity substantially influences the pattern formation process. Actually it was

claimed from analytical calculations that there is no pattern formation in a defocussing

Kerr cavity, since it is frustrated by bistable switching [79]. In the self-focussing case,

however, subcritically bifurcating hexagonal patterns are predicted by the nonlinear

analysis [78, 79].

Moreover, studying Kerr cavities is an important prerequisite for the investigation of

pattern formation in a polaritonic cavity. Due to the strong coupling, exciton-polaritons

provide a much richer range of dynamical regimes which is expressed in the characteristic

shape of the dispersion relation. The effective dispersion relation at the operating point

strongly depends on the chosen detuning of the pump frequency from the excitonic

resonance. In our studies, we will always restrict ourselves to the lower polariton branch

and disregard the photon-like upper polariton branch. The crucial parameter to address the

different parts of the lower polariton branch is the detuning. We know from Eq. (5.15) (cf.
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also Fig. 5.7) that scalar pattern formation is in principle possible for −0.78462 < Δ < 0.2.

Near the bottom of the lower polariton branch the dispersion relation is almost perfectly

parabolic and therefore the arising patterns are expected to resemble those of the Kerr

cavity. Increasing the detuning towards the excitonic resonance should alter the properties

of these patterns. After crossing this resonance they are expected to break up. These

three regimes will be investigated in this section.

Since the governing equations are much more complicated than in the case of the Kerr

cavity, the stability analysis turns out to be more challenging, cf. Sec. 5.3. Thus it is

necessary to study certain properties of the patterns via extensive numerical parameter

scans using the methods presented in Sec. 4.2.

6.1.1. Pattern formation near the bottom of the lower polariton

branch

Near the bottom of the lower polariton branch, the influence of the upper polariton branch

is negligible and the effective polariton dispersion relation is almost parabolic. Therefore,

the dynamics is expected to be of the Lugiato-Lefever type [72] with a defocussing Kerr

nonlinearity. Characteristic for this type is the bistable dependence of the HSs on the

external pump power. We can see from Eq. 5.7 that the scalar equations of motion

(2.13)-(2.14) exhibit bistable HSs for −0.79516 < Δ < −0.18994. It was claimed [79],

that bistable switching would frustrate pattern formation for a self-defocussing medium.

In the following we will find counterexamples proving this general statement wrong for

polaritonic cavities.

The width of the modulationally unstable pump range depends strongly on the detuning

Δ. This can be derived from Eq. (5.13). Figure 5.7(b) shows the dependence of the

MI range on the detuning only for antisymmetric perturbations and α = −0.1, but the

case discussed here is actually very similar. We see that near the bottom of the lower

polariton branch the MI range is rather small and lies totally within the bistability loop,

cf. also Ref. [170]. Therefore, the formation of a stable spatial pattern is frustrated, since

it immediately switches to the stable upper branch of the bistability curve.

For Δ = −0.55 the MI point lies still within the bistability loop, cf. Fig. 6.1(a).

Nevertheless, it is possible to observe the formation of a stable hexagonal pattern, cf. Fig.

6.1(b). Since the dispersion relation can still be regarded as parabola-like for Δ = −0.55,

it is not surprising, that the dynamics of the pattern formation has characteristics of the

Lugiato-Lefever model. The corresponding branch max |Ψ(x, y)| is shown in Fig. 6.1(a).

It bifurcates subcritically at the MI point which is in accordance with general statements
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Figure 6.1: Formation of hexagonal patterns in the bistability domain: (a) |Ψ| of stable HSs
(solid black), unstable HSs (dashed black), modulationally unstable HSs (dashed red line), and
max |Ψ(x, y)| of the hexagonal pattern (blue dots) versus the pump power Ep for Δ = −0.55, (b)
|Ψ(x, y)| of perfect hexagonal pattern for Δ = −0.55 and Ep = 0.265, (c) Fourier transformation |Ψk|
of (b) normalized to omitted HS background, k0 denotes the modulus of the Fourier components of
the hexagonal pattern and θ is the angle of the Fourier component with respect to the distinguished
Fourier component denoted by 1; (d)-(f) show the respective results for Δ = −0.45 and Ep = 0.341.

proven for the Kerr cavity [78, 79]. Its stability range extends from about Ep = 0.261

to 0.272 and is therefore rather small compared with the cases that will be regarded

below. Above Ep = 0.272 the arising pattern enters the attraction range of the unstable

HS and thus switches to the stable upper branch of the bistability loop. The Fourier

components of this pattern are shown in Fig. 6.1(c). Naturally, the strongest Fourier

component stems from the DC background at kx = ky = 0. However, in order to improve

the visibility of the other nontrivial Fourier components, we omitted the DC component

in all figures showing Fourier images in this section. Nevertheless, the strength of the

zeroth Fourier component is included indirectly, since all other peaks are normalized to

its amplitude. Due to the perfect hexagonal structure of the pattern in Fig. 6.1(b), the

first-order Fourier components are also arranged in a perfect hexagona. The second order

Fourier components arise naturally from four-wave mixing processes imprinted by the

third-order nonlinearity. They are about one order of magnitude weaker and also arranged

in a perfect hexagon.

aFor further convenience, they are enumerated 1-6. This convention will be revisited in Sec. 6.3, where the
influence of TE-TM splitting on the position of these six Fourier components is studied. In the framework
of these studies, k0 and the angle θ will also be needed.
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For Δ > −0.52012, the MI onset is left to the bistable pump range, cf. Fig. 5.7(b).

Therefore, the formation of spatial patterns is no longer subjected to switching processes

to the upper branch of the bistability loop. Once again, the arising stable patterns show

perfect hexagonal structure and bifurcate subcritically, shown exemplarily for Δ = −0.45

in Fig. 6.1(d). It is notable, that their stability range is substantially increased compared

with that for Δ = −0.55.

Apart from their stability range, the other main difference between the hexagonal patterns

for Δ = −0.55 and Δ = −0.45 is their lattice spacing near the MI point. It decreases

with increasing Δ, since the nonlinear dispersion relation gets broader in k space. This

tendency was predicted in Eq. (5.15) and could also be deduced from the shape of

the linear dispersion relation which gets wider if one increases Δ toward the excitonic

resonance, cf. Fig. 5.7(a).

By increasing the pump field, more power can be added to the system. For Δ = −0.55,

this lead straightforwardly to a switching to the upper branch of the bistability loop. For

Δ = −0.45, however, the patterns have a wider stability range. An example is shown

in Fig. 6.1(e) where the coupling between adjacent peaks is enhanced which leads to a

spontaneous symmetry breaking of the amplitude of hitherto undistinguishable peaks.

The occurrence of these periodical defects was described for the prototypical model of a

self-focussing Kerr cavity in Ref. [84]. Analyzing the Fourier transformation of the pattern

sheds further light on the origin of the defects. Whereas in case of a perfect hexagonal

pattern, all Fourier orders form perfect hexagons, this symmetry is clearly broken in Fig.

6.1(f). This Fourier profile exhibits a remarkable triangular symmetry which can be seen

best by looking at the triangle inside the hexagon spanned by the main Fourier orders.

For Δ < −0.55 the stability range of the hexagonal patterns shrinks further and finally

vanishes. Our simulations reveal this threshold to lie between Δ = −0.55 and Δ = −0.6.

Thus it is not possible to exhaust the range of detunings down to Δ = −0.78462. However,

we will show in Subsec. 6.2.3 that there is another effect linked to the existence of stable

dark solitons, which allows to circumvent the bistable frustration of pattern formation

also for Δ < −0.6 in the vectorial case with α < 0.

6.1.2. Pattern formation beyond the parabolic approximation

By increasing the pump frequency towards the excitonic resonance, the influence of

the upper polariton branch can no longer be neglected. Also the approximation of the

parabolic dispersion relation is not valid any more. Regarding pattern formation, the

crucial difference in comparison to the Lugiato-Lefever model, is the absence of bistability.
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thereby that the predicted direct link between I−
0,crit,s and I+

0,crit,s from Eq. (5.13) exists.

We note, however, that a line connecting the blue dots in Fig. 6.7(a) cannot be interpreted

as a genuine branch, but only connects the maxima and minima of the different patterns

at their respective pump powers. The actual branches would obey a more complicated

bifurcation scheme and are not included in this work, since the main objective of this

analysis consists in showing that the various stable patterns cover an extraordinarily

wide pump range. The investigated polaritonic system therefore turns out to provide

a more robust environment for the formation of stable patterns in a wide pump range

than the Kerr cavity, where an early transition to optical turbulence is reported [83].

Another remarkable fact is, that min |Ψ(x, y)| = 0 is reached during the transformation

from hexagons to domains.

The absolute value of the strongest Fourier mode’s wave vector is usually indirectly

proportional to the lattice spacing. In Fig. 6.7(b), this quantity is shown for various

pump powers both for the Fourier transformation of Ψ(x, y) (red dots) and E(x, y) (blue

dots). The monotonous decrease refers to the the fact, that the lattice spacing increases

with the pump power. The blue and red dots are almost identical. This behavior is an

indication, that the system is still away from the excitonic resonance. Further increasing

Δ will cause a considerable difference between these two values, cf. Figs. 6.10(b) and (d)

in the next subsection.

6.1.3. Pattern formation above the excitonic resonance

Near the nonlinearly blue-shifted excitonic resonance, many spatial frequencies are excited

likewise. For detunings above the linear excitonic resonance (Δ0 = 0), a crucial influence

of the strongly nonparabolic LPB dispersion can be expected, which will manifest itself in

effects involving large wave vectors k (cf. Fig. 5.5(d)).

We note that the model (2.13)-(2.14) disregards the strong dephasing mechanisms of

exciton-polaritons with very large values of k (i.e. almost free excitons). These additional

relaxation mechanisms are associated mostly with the scattering of the almost free

excitons with acoustic phonons [183]. Therefore the model (2.13)-(2.14) is reasonable only

if the overwhelming part of the spectrum is bounded within the domain of the polariton

dispersion relation where the photonic component does not vanish. It is worth mentioning

that this condition is satisfied for all solutions obtained here even for the case of slightly

positive detunings Δ0 < 2γ0, cf. Fig. 5.7(a).

The appearance of large wave vectors k in the spectrum can lead to the breakup of hitherto

perfect hexagonal patterns and the formation of domains without long-range order. We

59







6 Dynamics of extended structures

of E(x, y), however, is concentrated in the region with k < 1. Both Fourier profiles reflect

the internal structure of the respective component of the breathers, as it was shown for

single solitons in Ref. [144]. The discrepancy between the two Fourier profiles can be

explained with the help of the polariton dispersion relation: pumping near the excitonic

resonance leads to solutions with high k, i.e., solutions with a strong excitonic component.

On the other hand, the comparably weak photonic component is characterized by wave

vectors in the vicinity of the origin.

Similarly, the transmutation from a stationary two-dimensional pattern to localized struc-

tures consisting of a sharp peak emitting concentric rings of alternating high and low

intensities was reported in Ref. [184] using a degenerate optical parametric oscillator.

This behavior is explained by the interaction of a Hopf bifurcation and a Turing bifur-

cation leading to a competition between the respectively arising periodic and stationary

patterns.

The transition from periodic optical patterns to multipeaked cavity solitons was also

studied in Refs. [185, 186] for a saturable absorber in a cavity. In Ref. [187] the

spontaneous crystallization of a gas of solitons in a polariton Bose-Einstein condensate is

investigated.

The upper limit for the formation of patterns was calculated in Sec. 5.3 and is Δ0 = 2γ0,

thus Δ = 0.2. As long as one stays below this nonlinear resonance, it is also justified to

neglect the exciton dispersion which is 104− 105 times weaker than the photon diffraction.

6.2. Pseudospin dynamics of polariton patterns

Including the exciton spin adds a vectorial degree of freedom to the equations of motion.

This was described exemplarily for the case of a Kerr nonlinearity in Refs. [80, 81]. Since

the polariton equations with exciton spin exhibit the same structure in the nonlinearity

they can be expected to share several characteristics derived for the Kerr cavity. These

transverse instabilities mediated by the polarization effects typically lead to the formation

of hexagonal or stripe patterns. However, the dynamics of the polarization fronts can also

lead to labyrinthine patterns, cf. Ref. [188] for the case of degenerate four-wave mixing.

The cross-phase modulation parameter α between the two spins can have either sign

[151, 153, 159, 189]. The HS analysis in Sec. 5.3 has revealed that the expected shape

of the arising patterns depends crucially on this sign. Whereas for α > 0 a linearly

polarized solution consisting of two identical polarization patterns is expected, for α < 0
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shown in Ref. [191]. The formation of a Wigner crystal of half solitons [187] is a further

example of self organization of a polarization pattern.

For α > 0, the dark soliton solutions to be considered are symmetric [165]. Their stability

range is significantly smaller than that of the asymmetric solitons reported for α < 0.

Particularly, the switching point to the upper branch of the bistability loop lies usually

at too high pumps to match this stability range. Therefore, the stabilization mechanism

presented in this section was not observed for positive α.

6.3. Moving hexagonal patterns due to TE-TM splitting

The polariton pseudospin [151] inherited from the excitons adds a new degree of freedom

to the polariton dynamics. Its influence on the formation of spatial patterns has been

studied extensively in the preceding section. In this section, we want to examine the

influence of TE-TM splitting of the polaritons which was introduced to the equations

of motion in Sec. 3.2. It causes a precession of the pseudospin whose rotation velocity

depends on both the modulus and the direction of the polariton momentum k, cf. Subsec.

5.3.4 and Refs. [151, 192–196]. The spatial separation between exciton-polaritons with

different spins induced by this spin-orbit interaction is termed optical spin Hall effect

[192–196]. Furthermore, the directionally dependent pseudospin precession due to the

TE-TM splitting can cause a uniform motion of the whole polariton pattern linked with a

directional density current. This effect was shown in our paper [179] and will be explained

in this section.

Figure 6.1(b) shows a scalar pattern. Due to its hexagonal structure its Fourier components

are also arranged in a perfect hexagon, cf. Fig. 6.1(c). In the following analysis, it is

sufficient to disregard the internal structure of the Fourier peaks and treat them as

point-like. Furthermore, the higher order peaks arising from the four-wave mixing can

also be disregarded, since their amplitude is several orders of magnitude smaller than that

of the main peaks.

If we now simulate the full equations of motion (3.15)-(3.16), vectorial patterns will arise

due to α < 0, cf. Sec. 6.2. The bright peaks of the scalar pattern therefore split into

spatially separated spots with opposite polarization degree, cf. Figs. 6.12 and 6.13. This

observation is also depicted in Figs. 6.17(a) and (b). Moreover, these patterns are subject

to a uniform motion in the resonator plane whose velocity is proportional to β, cf. Figs.

6.17(c) and (d). Like in the optical spin Hall effect [192, 193], the polaritons experience

a directionally dependent pseudospin precession whose rotation velocity and rotation

direction shows a nontrivial dependence on the transverse wave vector k, cf. Fig. 5.8.
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Figure 6.17: Moving hexagonal patterns for β = 0.05: (a) Intensity profile IE(x, y), (b) polarization
degree ρE(x, y), (c) and (d) show the time evolution of IE(x, y) through the sections x = 0 and
y = 0, respectively, their respective Fourier components are depicted below in (e) and (f). The
frequency shifts calculated with Eq. (6.11) are denoted with red dashed lines. Parameters are
β = 0.05, α = −0.1 and Ep = 0.283.

Therefore the different Fourier components enumerated with 1-6 in Fig. 6.1(c) are dressed

with different phases which additionally show a slow time dependence. There is a direct

link between the phase of these Fourier components and the position of the intensity

maxima of the actual pattern. Thus the peaks of the pattern are forced to start a uniform

drift.

The time evolution at the sections through x = 0 and y = 0 is depicted in Figs. 6.17(c) and

(d), respectively. These figures illustrate the fact that the whole pattern moves uniformly

parallel to the y axis. The Fourier transformations of these sections are shown in Figs.
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6.17(e) and (f), respectively. The frequency components with ky > 0 in Fig. 6.17(e),

namely 2 and 3, are redshifted. On the other hand, the frequency components 5 and 6

having ky < 0 are blueshifted by the same value. Therefore, these Fourier components

lie in a plane which is slightly tilted along the ky axis. For a given frequency shift ΔΩs

the velocity of the hexagonal pattern’s movement can be read as the slope of the line

connecting these points:

v =
ΔΩs

ky

=
ΔΩs

k0 sin θ
, (6.1)

where k0 and θ were defined in Fig. 6.1(c). In the following we want to derive an analytical

expression for the frequency shift ΔΩs connecting it with the polariton TE-TM splitting.

Therefore the hexagonal pattern will be represented as a discrete Fourier series containing

only the homogeneous background and its six main spectral components:

⎛⎝E±

Ψ±

⎞⎠ = p (0) A±
0 +

6∑
j=1

p (k0) A±
j ei(kj+Δkj)r−iΔΩjt. (6.2)

Here, the vector p (k) contains the Hopfield coefficients for the lower polariton branch

introduced in Eq. (5.2). It should be noted that these coefficients depend on the modulus

of kj and are thus identical for all six Fourier components. The momenta

kj = k0

⎛⎝cos θj

sin θj

⎞⎠ with θj =
π

3
(j − 1) (6.3)

are taken from the unperturbed scalar hexagonal patterns according to Fig. 6.1(c). The

TE-TM splitting causes small corrections Δkj to these momenta and ΔΩj to the respective

frequencies of the spatial components. Since the TE-TM splitting is rather small it is

reasonable to assume the amplitudes Aj to be constant in first order. Inserting the ansatz

(6.2) into the full equations of motion (3.15)-(3.16) yields a system of coupled nonlinear

equations

(ΔΩj −ΔLPB (kj + Δkj)) A±
j + N±

j = β (i (kxj + Δkxj)± (kyj + Δkyj))
2 e2

k0
A∓

j . (6.4)

Here, the nonlinear mixing terms N±
j have the form

N±
j ∝

6∑
m=0

6∑
n=0

(
A±

mA∗±
n + αA∓

mA∗∓
n

)
A±

j−m+n, (6.5)

where Aj−m+n denotes the amplitude of the mode with k = kj − km + kn. Since the

dispersion relation has to be fulfilled, there are several phase (and frequency) matching
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conditions which had to be met in order to derive Eq. (6.4). They read

Δk1 = −Δk4, Δk2 = −Δk5, Δk3 = −Δk6, Δk1 = Δk2 + Δk6 (6.6)

and

ΔΩ1 = −ΔΩ4, ΔΩ2 = −ΔΩ5, ΔΩ3 = −ΔΩ6, ΔΩ1 = ΔΩ2 + ΔΩ6, (6.7)

respectively. The TE-TM proportional to the small parameter β induces small corrections

ΔΩj and Δkj to the frequencies and the wave vectors of the hexagonal pattern, respectively.

Expanding Eq. (6.4) up to first order in these small perturbations yields

(
ΔΩj − 2Δ

′

LPB

(
k2

0

)
(kxjΔkxj + kyjΔkyj)

)
A±

j = βe2
k0

(ikxj ± kyj)
2 A∓

j . (6.8)

The leading term of the Taylor expansion of the lower polariton branch reads

Δ
′

LPB

(
k2

0

)
≡ ∂ΔLPB (k2)

∂ (k2)

∣∣∣∣∣
k2=k2

0

=
1

2

⎛⎝1− k2
0√

4 + k4
0

⎞⎠ . (6.9)

Evaluating the solvability condition of the homogeneous system of linear equations (6.8)

leads to an expression connecting the frequency and the phase shifts:

ΔΩj = 2Δ
′

LPB

(
k2

0

)
(kxjΔkxj + kyjΔkyj)± 1

2
βk2

0

⎛⎝1− k2
0√

4 + k4
0

⎞⎠ . (6.10)

This relation must be fulfilled by the Fourier components of the moving hexagonal pattern,

cf. Figs. 6.17(e) and (f). The relations ΔΩ1 = 0 and ΔΩ4 = 0 can be fulfilled by Δkx1 =
1
2
βk0 and Δkx4 = −1

2
βk0, respectively. The requirements for ΔΩ2,3 = −ΔΩ5,6 = −ΔΩs are

met if the respective wave vectors fulfill the relations Δkx2,5/Δky2,5 = −Δkx3,6/Δky3,6 =

− tan (π/3) = −√3. The frequency shift ΔΩs is then given by

ΔΩs =
1

2
βk2

0

⎛⎝1− k2
0√

4 + k4
0

⎞⎠ . (6.11)

It should be noted that these corrections are constructed in a manner that they fulfill

both the phase matching conditions (6.6) and the frequency matching conditions (6.7).

The formula (6.11) for the frequency splitting shows a structural similarity to the TE-TM

splitting of the lower polariton branch according to Eq. (5.6). However, they differ by

a factor of 2. Nonetheless, this highly unexpected similarity allows for another way to

explain the uniform movement of the pattern: Due to the TE-TM splitting of the lower
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polariton branch, cf. Fig. 5.2, the Fourier components of the hexagonal pattern can jump

spontaneously to the subbranches of the lower polariton branch. The phase-matching

condition (6.6) demands opposite Fourier components to enter different subbranches. This

leads to an effective tilt of the hexagon along a certain axis in Fourier spaceb, cf. Fig.

6.17(e). The structural similarity of the expressions (5.6) and (6.11) for the frequency

shift can be regarded as a main achievement of the analysis in Sec. 5.1, since it shows

a link between a highly elaborate numerics-aided analysis and a very basic study of the

linear dispersion relation’s behavior due to TE-TM splitting.

Figure 6.18: (a) Drift velocity of moving hexagonal patterns over their main wave vector k0. The
red dots denote results from direct simulations of the equations of motion. The solid black line
displays the analytical result in Eq. (6.1). (b) Velocity of the patterns over the parameter α from
direct simulations.

The dependence of the main wave vector k0 on the detuning and the pump power was

studied in Sec. 6.1 for scalar patterns. The velocity of various moving patterns taken

from simulations of the vectorial equations of motion (3.15)-(3.16) for various detunings

and pump powers is plotted over the main vector k0 of the pattern (red dots in Fig.

6.18(a)). These finding show a marvellous agreement with the analytical result from Eq.

(6.1). Deviations may be explained by the fact that we had to approximate the Fourier

amplitudes Aj as constant in the derivation of the analytical formula.

In Fig. 6.18(b) the velocity is plotted over α, taken from direct simulations of the equations

of motion. Moving hexagonal patterns arise for negative values of α and also for small

positive values of α. If α exceeds a positive threshold, however, the arising patterns

become stationary. This behavior can be explained by looking at the structure of the

different patterns. It turns out that all stationary patterns are linearly polarized whereas

the moving patterns exhibit a nontrivial polarization degree. In Secs. 5.3 and 6.2 we

showed for β = 0 that α < 0 leads to asymmetric patterns (E+(x, y) �= E−(x, y)), whereas

bThis axis is imprinted to the system by the polarization state of the pump. In the present case the tilt is
along the ky axis, cf. Fig. 6.17(e).
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α > 0 results in symmetric patterns (E+(x, y) = E−(x, y)). Since the TE-TM splitting

breaks the symmetry between + and − fields, this threshold will be lifted a bit to positive

α. Above the threshold value (cf. gray region in Fig. 6.18(b)) the symmetrizing force

stemming from α overpowers the symmetry breaking induced by β. However, the existence

of two spatially shifted solutions in the + and − polarization is a prerequisite for the

observed spontaneous movement. Note that the motion of molecules formed by vector

solitons was shown in Ref. [145]. This is also the reason why the movement reported here

could not be observed earlier in the framework of vectorial Kerr cavities [80, 81] since

there the cross-phase modulation parameter is usually not negative but positive and much

larger than one.

6.4. Chapter summary and concluding remarks

This chapter contains a comprehensive overview over the formation of spatially periodic

transverse polariton pattern in a semiconductor microcavity. It summarizes the result of

numerous numerical simulations. These simulations were based on the MI analysis from

Sec. 5.3 which particularly facilitated the choice of appropriate parameters (detunings,

pump power).

The scalar equations of motion (2.13)-(2.14) already exhibit different regimes of pattern

formation. Near the bottom of the lower polariton branch the dynamics is expected to

be similar to that of Kerr cavities. However, we observed the formation of subcritically

bifurcating hexagonal patterns with the pump range of bistable HSs. These findings prove

the statement wrong that pattern formation suffers from bistable switching to the upper

HS in the bistable regime [79]. However, the stability range of the polariton patterns is

comparably small.

By increasing the detuning towards the excitonic resonance this stability range can be

increased. For Δ > −0.18994 the HSs depend monostably on the pump power which

allows the formation of stable extended patterns over the whole modulationally unstable

pump range. Whereas near the smaller (bigger) critical intensity according to Eq. (5.13)

the arising patterns are undisturbed hexagons (inverted hexagons), they suffer from point

defects if one chooses pump powers further away from these critical points and eventually

lose their short-range order thus forming domains. Going even further away from the

critical points leads to the formation of labyrinthine stripe pattern. Approaching an

finally crossing the excitonic resonance Δ0 = 0 introduces a new effect: the hitherto

perfect hexagonal patterns experience point defects already at the critical intensity. By
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approaching the nonlinearly blueshifted excitonic resonance Δ0 = 2γ0 this behavior

becomes more pronounced by forming a gas of oscillating polariton solitons.

The exciton spin adds an additional degree of freedom to the system. Since the equations

of motion are symmetric under the permutation of spins +1 and −1, they exhibit both

linearly and elliptically polarized solutions for a linearly polarized pump beam. We found

that the sign of the cross-phase modulation parameter α between excitons with different

spins is crucial for the topology of the arising patterns. For α > 0 the linear polarization

of the pump is conserved in the arising hexagonal patterns which can be reduced to the

scalar pattern by a simple scaling of all fields. For α < 0, however, the spin symmetry is

broken spontaneously. This symmetry breaking is expressed in a spatial shift between

the two patterns connected with opposite spins. Depending on their displacement the

resulting intensity pattern can either be honeycomb-like or consist of modulated stripes.

Like in the scalar case, the occurrence of domain structures and labyrinthine patterns

was shown for sufficiently high detunings. Near the bottom of the lower polariton branch

one can observe the spontaneous formation of stable domains framed by one-dimensional

dark vector solitons. This mechanism also counteracts the bistable frustration of pattern

formation reported for Kerr cavities.

The aforementioned symmetry of the equations of motion is broken directly by the TE-TM

splitting of the cavity modes. This additional term forces the vectorial patterns to move

uniformly in one of the transverse directions. Similar to the optical spin Hall effect, this

motion is induced by the directionally dependent pseudospin precession of the polaritons,

cf. Subsec. 5.3.4. An analytical expression for the dependence of the velocity on the

main wave vector of the pattern was derived from a nonlinear analysis of the shift of the

hexagonal pattern’s Fourier components. The comparison with the simulation results

shows good agreement.
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7. Dynamics of dark polariton solitons

After having studied spatially extended polariton patterns in Chapt. 6, we shall have

a look at spatially confined structures in Chapts. 7 and 8. This chapter is devoted

to the study of dark cavity solitons. In Chapt. 8, we will investigate bound states

of domain walls. Before dealing with the formation of spatially confined structures in

a polaritonic microcavity, we want to introduce the basic concepts in the framework

of simpler nonlinear systems. A prototypical model where the formation of spatial

solitons and bound states can be studied is given by the nonlinear Schrödinger equation

(NLSE) [197]. The balance between defocussing tendencies due to diffraction and the

(re-)focussing due to the nonlinear medium can lead to the formation of stable wave

packets which conserve their finite size. Since the NLSE in one transverse dimension

is integrable [87, 91, 198], higher order solitons can be found by the inverse scattering

method. It is important to note that all these solutions are represented by discrete spots

in phase space. This characteristic feature is due to the absence of losses and suggests

the denotation conservative soliton or Hamiltonioan soliton. Due to their robustness and

their spatial confinement, solitons are promising candidates for all-optical information

storage and processing devices [6, 55, 56, 92, 93, 199, 200]. Depending on the sign of the

difference between the soliton’s peak intensity and the intensity of the surrounding HS,

one distinguishes between bright and dark solitons. Bright solitons are characterized by a

spot with high intensity embedded in a HS of lower intensity. Dark solitons, however, are

formed by a spot of low intensity nesting on a HS of higher intensity. In the lossless case,

it is even possible to reach a lower intensity of zero in both cases. Dark solitons can be

set and reset by an optical control pulse. This allows the interpretation of a dark soliton

as an optical bit in the framework of an all-optical information storage device.

Nondiffracting wave packets were also observed in nonlinear cavities [48, 55, 56, 90, 92–

98, 184, 201]. These solutions are not solitons in the strict sense as introduced above. An

additional condition for their stability is the balance between losses and energy supply.

Thus these solutions are usually termed cavity solitons. It should be noted, that it is

also possible to create dissipative solitons without using cavities. The denotation cavity

soliton was introduced in 1998 in Ref. [202]. However, the concept of cavity solitons

as self-trapped switching waves was introduced before in Ref. [99]. Contrary to the

Hamiltonian systems studied above, the pump power then parameterizes a continuous

family of solitons. In the language of dynamical systems, this family of solitons displays
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an attractor in phase space. This observation turns out to be important, when one tries to

create solitons either in a simulation or in an experiment. By shining a spatiotemporally

limited excitation beam, it is possible to prepare a state which is in the attraction range

of the attractor and will finally approach it when evolved in time. After this localized

state has formed, it can stay forever, even after its excitation beam has been turned off.

All cavities mentioned above in Refs. [48, 55, 56, 90, 92–98, 184, 201] have been opperated

in the weak-coupling regime. It should be noted that applications of cavity solitons in the

weak-coupling regime are limited by the relatively weak nonlinearity and slow response

times. The typical pump intensities needed to evoke bistability are therefore in the

range of 10 kW/cm2. In the strong-coupling regime, however, the nonlinearity which is of

excitonic origin, is about two orders of magnitude stronger [3, 111, 135, 203]. Therefore

the required pump intensity can be decreased down to about 100 W/cm2 which would

enable low-threshold optical bistability [39, 40, 204] and thus make the strong-coupling

regime even more interesting for the above mentioned applications. Another advantage

of the strong-coupling regime originates from the typical response times of the coherent

interaction lying in the picosecond range, cf. Sec. 2.1. This is about three orders of

magnitude faster than the incoherent interaction in the weak-coupling regime. One can

conclude that the strong-coupling regime would allow for fast applications at comparably

low pump energies.

Trapping photons in small volumes is also a demanding task. Thus it would be difficult to

achieve a dense packing of light-only cavity solitons, as it is the case in the weak-coupling

regime, where cavity solitons can have a typical diameter of about 10 μm. The polaritons

formed in the strong-coupling regime, however, have a much smaller effective wavelength

originating from their excitonic component [3, 12, 111, 134]. The diameter of the two-

dimensional polariton solitons can be reduced to about 3 μm [170]. This would also be

the approximate size of the respective optical bit.

Solitonic effects have also been discussed in the framework of polariton condensates

[31, 32] and shown experimentally [205] in microcavity operated in the strong-coupling

regime. Furthermore polariton droplets arising from parametric effects have been observed

in Refs. [23, 196, 206]. A special type of topological soliton is referred to as vortex

[17, 28, 31, 32, 38, 162]. These vortices also offer possibilities as polaritonic memory

devices [38].

The properties of dark solitons arising from the scalar equations of motion are summarized

in Ref. [100]. The discussion of dark solitons with consideration of the exciton spin in

Secs. 7.1 and 7.2 will be based on these findings and has been published in our paper [165].

Similar to the case of extended patterns, the shape of the arising stable solitons turns out
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to depend on the sign of the cross-phase modulation parameter α. Stable solutions for

α > 0 will again merely arise from the scalar case by scaling all fields with
√

1 + α. For

α < 0, however, a spontaneous spatial symmetry breaking between the two polarizations

similar to that for the vectorial patterns investigated in Sec. 6.2 will lead to the formation

of vectorial solitons.

7.1. Linearly polarized two-dimensional solitons for

positive cross-phase modulation parameter α

The nature of stable solitons arising in a nonlinear system is dictated by the relative sign

η between the nonlinearity and the diffraction term. This is discussed in the framework

of the Lugiato-Lefever model in Refs. [78, 79, 207]. In the self-focussing case (η = +1)

stable bright solitons can form. In the self-defocussing case (η = −1) these bright

solitons are usually unstable since nonlinearity and diffraction do not counteract but both

result in an outwards pointing force on the flanks of the bright soliton. On the other

hand, dark solitons are genuinely stable in the presence of a defocussing nonlinearity

[87, 91, 98, 197]. Dark solitons always nest on the upper branch of a bistability loop,

cf. Fig. 7.1. Therefore, the presence of bistable HSs is a necessary prerequisite for the

existence of dark solitons. We have shown in Sec. 5.2 that the symmetric HSs are bistable

for −0.79516 < Δ < −0.18994. In the current section we will choose Δ = −0.7 in order

to meet the bistability condition.

In the framework of nonlinear optics, dark solitons were also discussed in, e.g., a cavity

with a saturable defocussing nonlinearity [202], in semiconductor microcavities operated

in the weak-coupling regime [48], and in a passive quantum-well-semiconductor resonator

[90].

Furthermore, stable dark cavity solitons have been reported recently both theoretically

and experimentally in the weak- [48, 87, 94, 208] and in the strong-coupling regime [170].

The profile |Ψ+(x, y)| = |Ψ−(x, y)| of a two-dimensional dark polariton soliton is shown

in Fig. 7.1(a). These linearly polarized solitons are also referred to as symmetric solitons.

Figure 7.1(b) shows the section through the profile at y = 0. Note, that this section is not

automatically a one-dimensional dark soliton, although these solutions also exist. It was

pointed out before, that dissipative solitons can usually be represented by subsurfaces

in phase space. In order to illustrate this fact graphically, it is reasonable to project

these high-dimensional objects on a subspace spanned by only a few parameters. The

arising branch is formed by the red lines in Figs. 7.1(c) and 7.1(d). The dark soliton is
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Figure 7.1: (a) Two-dimensional profile |Ψ+(x, y)| = |Ψ−(x, y)| of a stable dark soliton at Ep =
0.16603, (b) section through (a) at y = 0, (c) amplitude of the symmetric homogeneous state (black
line) and min|Ψ±(x, y)| for dark solitons (red line), shown as a function of Ep, (d) is a close-up
of the rectangular region from (c) showing the bifurcations and the branch min|Ψ±(x, y)| of the
dark soliton. The blue dot marks the position of the profile on the branch. Parameters are chosen
Δ = −0.7 and γ0 = γc = 0.1. Bold lines denote stable solutions and dashed lines denote unstable
solutions.

represented by min|Ψ(x, y)| which is plotted over the pump power Ep. The branch of the

symmetric dark soliton bifurcates subcritically from the left folding point of the linearly

polarized HSs’ bistability loop. The soliton branch consists of alternating stable and

unstable subbranches. Due to the subcritical nature of the bifurcation, there is an unstable

subbranch in the vicinity of the bifurcation point. Its relative amplitude compared with

the HS is small and increases with increasing Ep. It finally reaches a turning point after

which the dark soliton stabilizes. This stable subbranch also contains the exemplary profile

from Fig. 7.1(a), which is denoted by a blue dot. The stable dark soliton gets deeper by

decreasing the pump power. This mechanism is typical for a subcritical bifurcation.

By decreasing Ep one then reaches the next turning point which displays the transition

to another unstable soliton. Going along its branch leads straightforwardly to another

transition which once again features a stable dark soliton. It is a higher-order soliton

with a Mexican-hat like shape featuring a main minimum at r �= 0. Thus it is separated

in phase space from the first-order soliton. We will show in the framework of vectorial

solitons, that it is possible to create a higher order soliton be merging two first-order
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solitons, cf. Fig. 7.6.

It should be noted, that the results presented so far can be reduced to the scalar case

presented in Ref. [170] by scaling all fields and the pump with
√

1 + α. They serve as

a prerequisite for the study of dark soliton formation with the inclusion of exciton spin,

that will be presented in the following section.

7.2. Elliptically polarized solitons for negative

cross-phase modulation parameter α

7.2.1. Two-dimensional vectorial solitons

After having examined the formation of linearly polarized solitons for α > 0, we want to

investigate the case α < 0. The physical mechanisms originating from the exciton spin

that act on the solitons will turn out to be similar to that described in the framework of

pattern formation in Sec. 6.2. Whereas in the case of pattern formation, the spontaneous

symmetry breaking leads to a relative shift of the whole polarization pattern for α < 0, the

solitons are spatially confined and thus allow to study this symmetry breaking mechanism

in a purer form. Once again, the sign of α turns out to be the crucial parameter. We

already know, that for α > 0, the linearly polarized dark solitons are stable, cf. Sec.

7.1.

Branches and profiles

For α < 0, the whole symmetric soliton branch destabilizes, cf. the dashed blue branch in

Fig. 7.2(a). More precisely, any asymmetric perturbation grows exponentially in time

eventually switching to elliptical polarization. Of course, this symmetric branch then

bifurcates from the left folding point of the bistability loop formed by the symmetric

HSs. The destabilization of the symmetric soliton is comparable to the destabilization of

symmetric patterns described in Sec. 6.2. A qualitatively new family of stable vectorial

solutions arises via spontaneous symmetry breaking for α < 0. It has to be emphasized

that the symmetry between fields with pseudospin +1 and −1 only exists for a linearly

polarized pump (ρEp
= 0). The spontaneous breaking of this symmetry leads to stable

elliptically polarized stable solutions despite a linearly polarized holding beam. This effect

highlights the physical relevance of the polariton pseudospin. The same objective cannot

be addressed if the symmetry of the equations of motion is broken a priori by applying an
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7 Dynamics of dark polariton solitons

Figure 7.2: Branches and profiles of two-dimensional vectorial dark solitons: (a) Amplitude of
symmetric homogeneous states (HSs) in the vicinity of the left folding point of their bistability loop
and min|Ψ(x, y)−| for dark solitons vs. external pump power Ep, ρEp

= 0, for α = −0.1; symmetric
states are depicted black (homogeneous) and blue (soliton) whereas the branch of the asymmetric
solitons is shown magenta; solid and dashed lines mark stable and unstable solutions, respectively;
(b) profile of a stable asymmetric vector soliton for Ep = 0.1845 (point 1); (c) profile of a stable
higher order asymmetric vector soliton for Ep = 0.1847 (point 2).

elliptically polarized holding beam as it was done in Ref. [209], where one-dimensional

vector solitons were predicted for ρEp
= 0.2.

A typical profile of a stable soliton is depicted in Fig. 7.2(b). Whereas one polarization

(here Ψ+) develops a fully-fledged dark soliton, the other one differs barely from the upper

HS. Thus the total vector soliton is elliptically polarized and therefore termed asymmetric

soliton or dark half-soliton according to Refs. [189, 210, 211]. It is evident that both types

of dark vector solitons with left- and right- dominant polarization components coexist for

the same parameter sets. A similar type of vectorial solitons also arose in the framework

of pattern formation, cf. Fig. 6.16 in Sec. 6.2. In that case, a periodic pattern broke up

due to bistable frustration which led to the formation of several domains framed by vector

solitons. Whereas the focus of that section has been on the dynamics of the domains, we

want to have a closer look on the properties of the vectorial solitons in this section. The

influence of vectorial effects on the formation of cavity solitons was also studied in a Kerr

cavity [212] and in vectorial second harmonic generation [213].

In Sec. 5.2 an analysis describing the bifurcation behavior of asymmetric HSs from

symmetric HSs was performed. It culminated in the statement that above a critical

value for α (cf. Eq. (5.10)) no asymmetric HSs can exist. The qualitative picture of

the bifurcation of the asymmetric localized solutions is similar to the homogeneous case,

though, however, the critical value cannot be obtained analytically. Direct numerical

simulation of the stationary version of Eqs. (3.4)-(3.5) shows that the branch of asymmetric

vector polariton solitons bifurcates from the branch of symmetric solitons for α < 0.162.

This branch exhibits stable intervals provided that α < 0.11. Note that the symmetric

and the asymmetric soliton branch coincide if both polarizations are uncoupled (α = 0).
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For the more realistic value of the coupling parameter α = −0.1 [151], the branch of

the asymmetric vector cavity polariton solitons emanates from the symmetric HS in

the bifurcation point where it becomes unstable against asymmetric perturbations. The

modulus of the fields can be obtained by choosing the plus sign in Eq. 5.9. The branch

of the asymmetric soliton lies at higher Ep values than the symmetric soliton branch

and, more importantly, has a wider stability range. This can be crucial for potential

applications as all-optical memory devices. The width of the stability range increases for

bigger negative values of α.

Like in the symmetric case, the total soliton branch contains more than one stable

subbranch. As the subbranches marked by 1 and 2 in Fig. 7.2(a) are separated in phase

space, the corresponding solitons must be topologically different, since they cannot be

transformed into one another by, e.g., smoothly varying an external parameter such as

Ep. Regarding their respective profiles in Figs. 7.2(b) and (c) indicates this difference

quite clearly: whereas the fundamental soliton in Fig. 7.2(b) belonging to subbranch 1

has only one minimum, the soliton in Fig. 7.2(c) belonging to subbranch 2 exhibits two

pronounced minima and can therefore be classified as a higher order soliton.

Spatial splitting of linearly polarized solitons

We proceed with the numerical analysis of the soliton dynamics originating from the

polarization (or spin) instability of polaritons. The analysis of the steady-state solutions

reveals that the entire branch of the symmetric dark soliton is unstable for α < 0, cf. Fig.

7.2(a). The dynamical evolution of a symmetric dark cavity polariton soliton is shown

in Fig. 7.3. The pump power is chosen Ep = 0.1837, which lies in the middle of the

symmetric soliton branch. Shortly after the start of the time evolution, the dark soliton

formed in E+ has vanished and the solution has adapted to the surrounding HS. The

remaining intensity dip in E− creates a spot in the polarization degree, cf. 7.3(d). Figures

7.3(b) and (e) show the profiles after another 20 photon lifetimes. The intensity dip in E−

moves outwards radially. Actually, the intensity profiles are rather undulated, cf. 7.3(c)

after 70 photon lifetimes. Eventually, they approach the asymmetric HS. Simulations for

different values of the pump power reveal, that this dynamic is accelerated by choosing a

smaller Ep.

As it was mentioned, a dark vector polariton soliton has a substantial interval of stability

and, therefore, becomes a new stable attractor of the system for negative values of the

coupling parameter α < 0. The dynamical evolution of a symmetric dark cavity polariton

soliton is shown in Fig. 7.4 for α = −0.1 and Ep = 0.1845. The initial intensity profile in

Fig. 7.4(a) is formed by two dark solitons in E+ and E−. Like in the case discussed above,

83
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Figure 7.7: Branches and profiles of a one-dimensional dark vector soliton: (a) Amplitude of
symmetric homogeneous states (HSs, black lines) in the vicinity of the left folding point of their
bistability loop and min|Ψ(x, y)−| for one-dimensional dark solitons (blue lines) vs. external pump
power Ep, ρEp

= 0, for α = −0.1; solid and dashed lines mark stable and unstable solutions,
respectively; modulationally unstable HSs are marked with a dashed red line; profile of a stable
first-order asymmetric vector soliton for Ep = 0.19; (c) profile of a stable higher order asymmetric
vector soliton for Ep = 0.1859.

a pump power that lies both in the modulationally unstable pump range of the HSs

(marked by the red dashed line in Fig. 7.7(a)) and in the stable pump range of these

solitons. The branch of the solitons can be determined by means of the Newton-Raphson

iterative method. This method allows for the determination of both stable and unstable

solutions depicted in Fig. 7.7(a) with bold and dashed blue lines, respectively. It should

be noted that the stability range of the one-dimensional soliton is larger than that of

the two-dimensional soliton. Figure 7.7(c) shows a higher-order soliton. Like in the

two-dimensional case, it can arise from the merging of two attracting first-order solitons.

7.3. Chapter summary and concluding remarks

This chapter is devoted to the study of various aspects of soliton formation in a semi-

conductor microcavity. These results have been produced by means of extensive direct

numerical simulations of the respective equations of motion. The iterative Newton solver

was used to double-check the reliability of the obtained results and add yet another facet

by offering the possibility to study the whole soliton branches containing not only stable

solitons of various orders, but also unstable branches. The HS analysis from Sec. 5.2 gave

valuable hints for choosing reasonable detunings and pump powers.

Due to the defocussing nature of the polaritonic nonlinearity the only genuinely stable

soliton solutions are one- and two-dimensional dark solitons. In this chapter, we used

equations of motion with exciton spin, but without TE-TM splitting. Investigating the
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influence of the exciton spin on the formation of dark solitons reveals certain similarities

to the afore studied periodic patterns. The crucial parameter is once again the cross-phase

modulation parameter α between excitons with different spins. For α > 0 the stable soliton

solutions are linearly polarized and can thus be reduced to the scalar case investigated in

Ref. [170] by scaling all fields with
√

1 + α. Dark solitons bifurcate from the left folding

point of the bistability loop. In the case of α < 0, however, the spontaneous symmetry

breaking favors elliptically polarized vector solitons whose branch and stability range is

broadened compared with the respective symmetric soliton branch. After preparing a

symmetric soliton one observes its splitting into two spatially distinct vector solitons due

to spontaneous symmetry breaking. Whereas two oppositely poled vector solitons repel

each other, one can observe an attractive force between two vector solitons with the same

polarization degree. The merging of these two vector solitons can eventually lead to the

formation of a higher order soliton.

The results obtained for two-dimensional solitons can be transferred to the case of stripe

solitons. An important property of these quasi-one-dimensional solitons is there broad

stability range. The occurrence of domains arising from pattern formation within the

bistability loop can be explained by the overlap of the MI range with the stability range

of the one-dimensional vector solitons.
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8. Dynamics of one-dimensional

domain walls

Like in the preceding chapter, solutions of the spin-dependent equations of motion (2.13)-

(2.14) are studied. In Chapt. 7, the existence of bistable symmetric HSs was exploited as

a prerequisite for the formation of dark solitons. In the current chapter, we consider the

whole set of multistable HSs as it was presented in Sec. 5.2. The coexistence of various

different stable HSs at the same pump power allows to study the competition of domains

prepared at those HS values and the subsequent behavior of their domain walls. According

to Ref. [214], one can distinguish between amplitude domains and phase domains.

Amplitude domains are formed between two nonequivalent domains. The typical behavior

of walls between HSs with different amplitude will be studied in Sec. 8.1 for α > 0.

In this case, its dynamics is dictated by the mere competition between symmetric HSs.

Generally, a front connecting two nonequivalent HSs moves in such a way that the more

stable state annihilates the other. The pump power, where both domains could be linked

by a stationary wall, is called Maxwell point (MWP).

For α < 0, however, this typical behavior is overpowered by the formation of stable

elliptically polarized domains, cf. Sec. 8.2. Once again, there are no stationary domain

walls between the nonequivalent states.

The discrete symmetry of the vectorial equations under permutation of + and − fields

allows for the construction of equivalent states, i.e., two states with the same intensity

but opposite polarization degree. In the terminology of Ref. [214] they are called phase

domains. Due to the discrete symmetry between the two domains, a front between them

is generally expected to be at rest. However, this stationary system can be destabilized

in favor of a pair two counterpropagating fronts when it reaches a bifurcation point by

tuning a system parameter such as the pump power. The transition from a resting to a

moving front is called Ising-Bloch transition [215–218]. It was described in many different

physical systems such as liquid crystals [219, 220], anisotropic ferromagnets [221], and

semiconductor etalons [222]. Also in systems being far from equilibrium the aforementioned

symmetry can be preserved which leads to pairs of equivalent solutions. However, the force

acting on a front can be nonzero. A common denotation for the underlying bifurcation

is nonequilibrium Ising-Bloch (NIB) transition. It has been observed in many systems

91



8 Dynamics of one-dimensional domain walls

including reaction-diffusion systems [216–218], optical parametric oscillators [223], systems

described by the complex parametrically driven Ginzburg-Landau equation [215], and in

second harmonic generation [224]. A universal criterion for the onset of a NIB transition

was shown in Ref. [224] using the fact that a bifurcation from a resting solitary wave to a

moving one has to be linked to the onset of the translational mode.

The results presented in this chapter have not been published yet.

8.1. Moving domain walls between linearly polarized

domains for α > 0

Figure 8.1: Domain walls for α = 0.1: (a) Amplitude of symmetric (black) and asymmetric (gray)
homogeneous states (HSs); solid and dashed lines denote stable and unstable solutions, respectively;
MWP denotes the Maxwell point of the symmetric HSs at Ep = 0.16665; (b) Profile of a moving
domain wall |Ψ±| at Ep = 0.1667. The detunings are chosen Δ = −0.7.

In the scalar case [170] according to Eqs. (2.13)-(2.14) there is exactly one Ep value,

where the upper and the lower HS in bistability can be connected by a stationary 1D

front. This Ep value is the Maxwell point. The occurrence of a standing 1D front between

the upper and lower symmetric HS can also be observed in the vectorial case for α > 0.

The value EMWP of the pump at the MWP is calculated by scaling the scalar MWP with√
1 + α. It is marked with a blue dot in Fig. 8.1(a). For Ep > EMWP, the movement of

the domain wall causes the spatial broadening of the upper HS at the expense of the lower

HS, cf. Fig. 8.1(b). On the other hand, for Ep < EMWP, the movement of the domain

wall will be reversed thus leading to the expansion of the lower HS. It is impossible to

construct a stationary domain wall, since its existence conditions have to be met with

arbitrary precision. This fact agrees with the general statement that it is impossible to

build a stationary wall between two nonequivalent states.
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8.2. Formation of elliptically polarized domains for α < 0

Figure 8.2: Domain walls for α = −0.1: (a) Amplitude of symmetric (black) and asymmetric (gray)
homogeneous states (HSs); solid and dashed lines denote stable and unstable solutions, respectively;
MWP denotes the calculated value of the Maxwell point of the symmetric HSs at Ep = 0.1843; (b)
Profiles of diverging domain walls for |Ψ+| (red) and |Ψ−| (blue) at Ep = 0.1843; D1 (D3) shows the
domain of the upper (lower) symmetric HS, the domain of the asymmetric HS is denoted with D2.
The detunings are chosen Δ = −0.7.

For α < 0 the scaled MWP lies at a point where stable symmetric HSs and asymmetric

HSs compete, cf. the case α = −0.1 in Fig. 8.2(a). We showed for dark solitons ( cf.

Ref. [165] and Sec. 7.2) and hexagonal patterns (cf. Ref. [164] and Sec. 6.2) that the

negative α is responsible for a spontaneous symmetry breaking mechanism leading to

the destabilization of symmetric solutions in favor of asymmetric solutions. The same

holds here for the case of domain walls. An initially prepared configuration consisting of

a domain wall between upper symmetric HS (denoted with D1 in Fig. 8.2(b)) and lower

symmetric HS (denoted with D3 in Fig. 8.2(b)) destabilizes. The result of these diverging

domain walls is a stable domain formed by asymmetric HSs and denoted with D2 in Fig.

8.2(b). This instability of the initial configuration is not foremost due to the competition

between two nonequivalent states but because of the predominance of asymmetric HSs.

8.3. Nonequilibrium Ising-Bloch transition for elliptically

polarized domains

Having stated in the former section that the stable HSs for α < 0 are asymmetric (ρΨ �= 0),

we proceed with a survey of one-dimensional domains formed by asymmetric HSs and the

dynamics of the walls between these domains. Unlike the solutions discussed so far, the

domains have the same intensity and differ only in (the sign of) their polarization degree.

Thus they are equivalent and called phase domains in the terminology of Ref. [214].
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Figure 8.3: Nonequilibrium Ising-Bloch transition: (a) black (gray) lines show the amplitude of
symmetric (asymmetric) HSs; solid and dashed lines denote stable and unstable solutions, respectively;
dark blue lines: min|Ψ±| of the Ising wall; (b) dotted area: pump range of stationary phase domain
walls as a function of α; dashed black line: scaled Maxwell points for the competition of upper and
lower symmetric HS; (c) perfect Ising wall for Ep = 0.18; (d) broadened domain wall for Ep = 0.18586;
parameters are chosen α = −0.1 and Δ = −0.7.

An example of a stationary wall between two equivalent states is shown in Fig. 8.3(c)

for Ep = 0.18. The full stability range of the bound states for α = −0.1 reaches from

Ep = 0.1767 to 0.1859 (cf. blue line min|Ψ+| in Fig. 8.3(a)), its dimension is thus

comparable to that of the scalar bright soliton [100]. This is exactly the pump range

where the asymmetric HS wins the competition with the symmetric HSs as described in

the preceding section. According to the terminology in Refs. [96, 224] the resting fronts

of this bound state can be denoted as Ising fronts. While increasing the pump power, one

observes that the hitherto spatially confined domain wall has become a spatially extended

transition domain, cf. Fig. 8.3(d) at Ep = 0.18586. For Ep > 0.1859 the two walls lose

cohesion and move in opposite directions. This formation of Bloch walls indicates the

onset of the NIB transition. On the other hand, below Ep = 0.1767 the bound state

destabilizes in favor of the lower branch of the bistable symmetric HSs.

Since the cross-phase modulation parameter α being negative is a necessary condition
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for the relative stability of asymmetric HSs in comparison with symmetric HSs, it seems

worthwhile to analyze its influence on the width of the stability range of Ising walls

quantitatively. Therefore we determined the dependence of the NIB transition on α

both with the static Newton-Raphson solver and by directly simulating the equations of

motion. The results are shown in Fig. 8.3(b). For α > 0 there are no Ising walls since

the asymmetric HSs always destabilize in favor of symmetric HSs whose movement is

then dictated by the relative value of the pump power compared with the scaled Maxwell

point. For α < 0, however, there is a pump range where stable Ising walls exist, cf. the

dotted area in Fig. 8.3(b). This range originates at the Maxwell point for α = 0 and

gets broader when −α is increased. Therefore α = 0 is the bifurcation point of a NIB

transition supported by the stability of asymmetric HSs for α < 0.

8.4. Chapter summary and concluding remarks

This chapter concludes the study of spatially nonuniform solutions that can form in

the transverse plane of the polaritonic microcavity by giving a thorough investigation

of one-dimensional domain walls in a polaritonic system with spin. We determined the

Maxwell point for domain walls between domains formed by lower and upper branch of the

bistability loop, respectively, for positive values of the parameter α. For α < 0 we observed

the typical transition to elliptically polarized stable solutions. The asymmetric HSs prove

to be suitable for the construction of equivalent domains, i.e., domains with equal intensity

but opposite polarization degree which are termed phase domains. These domain walls

have a broad stability range. The transition from stationary (Ising) to moving (Bloch)

walls is observed at the upper boundary of the stable pump range. Since these solutions

can only be stable for negative values of α, we identify α = 0 as a bifurcation point of a

nonequilibrium Ising-Bloch transition.
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9. Summary

In this thesis we investigated the nonlinear dynamics of exciton-polaritons in a coherently

pumped semiconductor microcavity both analytically and numerically. Our efforts aimed

at exploiting the peculiarities of exciton-polaritons which are based on their hybrid

nature. For that, the wave-particle dualism of these quasi-particles can also be highlighted.

Depending on the choice of parameters (mainly detunings and pump inclination) the main

features of the polaritons can be both excitonic which corresponds to spatial localization

or photon-like expressed by a wave-like behavior.

Our main focus was put on the investigation of effects originating from the exciton spin

whose strong coupling to left and right circularly polarized cavity photons leads to the

rare case of a bosonic two-level system.

The splitting between TE- and TM polarized cavity modes provides a linear interaction

mechanism for polaritons with opposite pseudospin. It competes with the nonlinear

contribution to the Coulomb interaction between two excitons with opposite pseudospin.

The interplay of these two different mechanism also reveals the hybrid quantum nature of

exciton-polaritons. This work contains a comprehensive theoretical study of the polariton

pseudospin of unprecedented depth making use of various solutions of the equations of

motion and their interplay.

The solutions of the equations of motion which were studied in order to highlight the various

properties of exciton-polaritons include homogeneous solutions (HSs), dark cavity solitons,

spatially periodic patterns, and domain walls between different HSs. Due to the Kerr-like

nonlinearity, one can achieve bistability of the linearly polarized HSs by properly detuning

the pump frequency against the excitonic resonance. The bifurcation of multistable

elliptically polarized HSs at a critical value of the cross-phase modulation parameter α

according to Eq. (5.10) constitutes the importance of genuine effects originating from the

exciton spin.

A prototypic example of a nonlinear effect is the spontaneous formation of spatially

periodic patterns. We used it as a working horse to exemplify the influence of all tunable

parameters of the system and the arising effects. We concentrated on the lower polariton

branch which is distinguished by its unique shape thus offering different regimes of pattern

formation which can be triggered by the choice of the detuning from the excitonic resonance.

The arising patterns can be compared with those arising from the Lugiato-Lefever model
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which describes a cavity with Kerr nonlinearity. Actually, near the bottom of the lower

polariton branch the dispersion relation is approximately parabolic. Thus the effective

model in this parameter range can be approximated by a self-defocussing Kerr cavity

and the arising polariton patterns are similar to the well-known hexagonal patterns in

a Kerr cavity. Contrary to the self-defocussing Kerr cavity one can achieve a pattern

forming instability without having bistable HSs by approaching the excitonic resonance.

This offers the possibility to observe pattern formation over the whole modulationally

unstable range without bistable frustration. Slightly above the linear excitonic resonance

a link to soliton physics arises when the hitherto periodic patterns break up into a gas of

breathing solitons. We interpret this localization as a manifestation of the particle nature

of polaritons near the excitonic resonance.

The spin degree of freedom allows for the formation of vectorial polariton patterns

consisting of two spatially shifted patterns in the respective polarizations. The spontaneous

formation of an elliptically polarized total field despite being pumped by a linearly polarized

holding beam adds another evidence to the importance of effects originating from the

exciton spin. This spatial shift is by no means unique for periodic patterns, since we also

observed it in the framework of dark solitons where a linearly polarized soliton experiences

a spontaneous splitting into two spatially distinct elliptically polarized vectorial solitons.

Additionally taking into account the linear coupling of left and right polarization originating

from the TE-TM splitting of the cavity modes sets the entire pattern into a uniform

motion in the plane of the resonator. Similar to the optical spin Hall effect, this drift is

induced by the directionally dependent pseudospin precession of polaritons. The moving

direction is imprinted by the line connecting the two shifted polarization patterns. It

should be noted that this shift is required such that each polarization is driven by the

other one. This motion can also be witnessed in a purer fashion by preparing a molecule

consisting of two vectorial solitons with opposite polarization degree in close spatial

vicinity. This configuration results in a spontaneous motion of the entire molecule, since

each soliton is driven by the other one. Thus these phenomena are generic and can be

expected to occur in other nonlinear systems with a spin-orbit interaction mechanism.

Besides dark solitons and vectorial patterns, the spin degree of freedom allows the formation

of domain walls between asymmetric HSs with opposite polarization degree. Since these

domains have equal intensity they allow for a transition from stationary (Ising) to moving

(Bloch) walls. This nonequilibrium Ising-Bloch transition is observed at α = 0. The

existence of a broad pump range of stable one-dimensional Ising walls for, e.g., α = −0.1

makes exciton-polaritons a possible candidate for future optical information processing

devices.
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A general and well-known feature of many nonlinear systems is the existence of bistable HSs

as a prerequisite for dark solitons as well as the coexistence of stable HS and subcritically

bifurcating pattern as a prerequisite for existence of bright solitons. However, in the case

of exciton-polaritons there are several more links between the different types of solutions

which have been highlighted throughout this work. Besides the already mentioned link

between patterns and the formation of domains framed by dark solitons, there is another

relationship between patterns and solitons: Near the excitonic resonance periodic patterns

break up and form a gas of breathing solitons. This unveils a characteristic link between

spatially extended and spatially confined solutions caused by the influence of the excitonic

resonance.
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A. Bosonic operator algebra

According to Ref. [47], excitons (and likewise polaritons) exhibit a Bose-like statistic, as

long as the excited density is much smaller than the typical exciton saturation density.

Their bosonic nature is demonstrated experimentally with sufficient certainty in the

framework of Bose-Einstein condensation [14–22].

Thus, excitons as well as photons can be described with bosonic creation (â†
k) and

annihilation (âk) operators. These bosonic operators obey the following commutation

rules:

[âk, âk′ ] = 0, (A.1)[
â†

k, â†
k′

]
= 0, (A.2)[

âk, â†
k′

]
= δ (k− k′) , (A.3)

where [
â, b̂

]
:= âb̂− b̂â (A.4)

denotes the commutator of the operators â and b̂. Operators denoting different excitations

(namely exciton and photon operators) always commute. The commutator algebra is used

to calculate the Heisenberg EOM (2.11)-(2.12) for the field operators of cavity photons

and excitons. We show this procedure exemplarily for the excitons b̂k. We start with the

Heisenberg equation of motion:

i∂tb̂p =
[
Ĥ, b̂p

]
. (A.5)

Besides from rather simple contributions, this commutator contains the term
[
ĤXX, b̂p

]
which will be computed using the linearity of the commutator and its properties (A.1)-

(A.3):

[
ĤXX, b̂p

]
=

⎡⎣1

2

∑
k, k′, q

VXX(q)b̂†
k+qb̂†

k′−qb̂kb̂k′ , b̂p

⎤⎦ (A.6)

=
∑

k, k′, q

VXX(q)

2

⎧⎪⎪⎨⎪⎪⎩b̂†
k+qb̂†

k′−q

[
b̂kb̂k′ , b̂p

]
︸ ︷︷ ︸

=0

+[b̂†
k+qb̂†

k′−q, b̂p] b̂kb̂k′

⎫⎪⎪⎬⎪⎪⎭ (A.7)

=
∑

k, k′, q

VXX(q)

2

{
b̂†

k+q

[
b̂†

k′−q, b̂p

]
+

[
b̂†

k+q, b̂p

]
b̂†

k′−q

}
b̂kb̂k′ . (A.8)
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If we now evaluate the two commutators and additionally assume that VXX(q) can be

approximated with VXX(0), we end up with

[
ĤXX, b̂p

]
≈ −V (0)

∑
k, k′

b̂†
k+k′−pb̂kb̂k′ (A.9)

= −V (0)
(
b̂† 	 b̂ 	 b̂

)
p

, (A.10)

where the 	 symbol indicates the convolution of the fields.
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List of Abbreviations and Symbols

The following table lists abbreviations, acronyms, and symbols used throughout the

thesis.

α cross-phase modulation parameter between polaritons with pseu-

dospin +1 and −1.

αcrit critical value of α where asymmetric HSs bifurcate from symmetric

HSs; αcrit is given by Eq. (5.10).

β scaled TE-TM splitting parameter.

Δ detuning; joint denotation for Δc and Δ0, in case that they are

identical.

δΔLPB TE-TM splitting of ΔLPB.

δΔUPB TE-TM splitting of ΔUPB.

ΔΩs frequency shift of a Fourier component.

Δ0 detuning of the pump frequency from the resonance frequency of

the excitons.

Δc detuning of the pump frequency from the resonance frequency of

the cavity.

ΔLPB lower branch of the (scalar) linear dispersion relation.

Δ±
LPB TE-TM split version of ΔLPB.

ΔTE-TM frequency of the TE-TM splitting.

ΔUPB upper branch of the (scalar) linear dispersion relation.

Δ±
UPB TE-TM split version of ΔUPB.

ε dielectric constant of the semiconductor.



γ′ mean loss rate of the semiconductor microcavity; γ′ = (γ0 + γc)/2.

γ0 exciton decay rate; γ0 = 1/T2.

γc photon decay rate of the cavity.

âk, â†
k annihilation and creation operator for a cavity photon with wave

vector k.

b̂k, b̂†
k annihilation and creation operator for an exciton with wave vector

k.

Ĥ Hamiltonian for the semiclassical treatment of exciton-polaritons.

Ĥ0 linear part of the Hamiltonian.

Ĥcav part of the Hamiltonian describing the dynamics of the cavity

photons.

Ĥexc part of the Hamiltonian describing the dynamics of excitons.

Ĥlm part of the Hamiltonian describing the interaction between excitons

and photons.

ĤXX,asym part of the spin-dependent Hamiltonian describing the Coulomb

interaction between two excitons with opposite spin.

ĤXX,sym part of the spin-dependent Hamiltonian describing the Coulomb

interaction between two excitons with equal spin.

ĤXX nonlinear part of the Hamiltonian describing the Coulomb interac-

tion between two excitons.

k̂ wave number in the medium.

� reduced Planck constant; � ≈ 1.054 · 10−34Js.

λ general growth rate in the perturbation scheme.

λexc exciton radius.

k transverse wave vector; k = (kx, ky)t.

p(k) vector containing the Hopfield coefficients ek and ψk.
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A abbreviation for γ0 + γc/(γ2
c + Δ2

c).

B abbreviation for −Δ0 + Δc/(γ2
c + Δ2

c).

F finesse of the Fabry-Pérot cavity; the Q factor can be derived by

multiplying F with the resonance frequency divided by the free

spectral range.

μ reduced mass of an exciton.

∇2
⊥ transverse Laplace operator; ∇2

⊥ = −∂2
x − ∂2

y .

ωc real eigenfrequency of the cavity.

ωcav(k) dispersion relation of cavity photons.

ωexc(k) dispersion relation of excitons.

ΩR Rabi splitting.

Φ azimuthal angle in the transverse plane.

Ψ(x, y) scaled excitonic field in real space.

ψ1, ψ2 respective perturbations of Ψ and Ψ in the scalar perturbation

scheme.

ψ±
1 , ψ±

2 respective perturbations of Ψ± and Ψ± in the vectorial perturbation

scheme.

Ψk macroscopic excitonic field in Fourier space; Ψk =
〈
b̂k

〉
.

ρp polarization degree of the pump; in the present work, the pump is

always linearly polarized (ρp = 0).

τ transmissivity of a Fabry-Pérot cavity.

θ angle of the Fourier component with respect to the distinguished

Fourier component denoted with 1.

ε1, ε2 respective perturbations of E and E in the scalar perturbation

scheme.
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ε±
1 , ε±

2 respective perturbations of E± and E± in the vectorial perturbation

scheme.

β̃ TE-TM splitting parameter.

Δ̃c reduced cavity detuning; Δ̃c = Δc − k2
x − k2

y.

ω̃c complex eigenfrequency of the cavity; ω̃c = ωc + iγc.

Aj components of the Fourier decomposition of a pattern.

e elementary charge.

E(x, y) scaled electric field in real space.

Ep pump power.

Ek macroscopic electric field in Fourier space; Ek = 〈âk〉.

I±
0,crit,as intensity at the upper (+) and lower (−) Turing instability point

for antisymmetric perturbations.

I±
0,crit,s intensity at the upper (+) and lower (−) Turing instability point

for symmetric perturbations.

Iinc total incident pump intensity.

Je
z projection of the total angular momentum of an electron on the z

axis.

Jh
z projection of the total angular momentum of a hole on the z axis.

k0 modulus of the Fourier components of a hexagonal pattern.

kz z component of the wavevector.

k±
as modulus of the wave vector at the upper (+) and lower (−) Turing

instability point for antisymmetric perturbations

k±
s modulus of the wave vector at the upper (+) and lower (−) Turing

instability point for symmetric perturbations

Lc length of the microcavity, typically in the range of 0.2− 0.4μm.
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Mh
z projection of the mechanical angular momentum of a hole on the z

axis.

m0 mass of the free electron in vacuum.

me effective mass of the electron in a periodic crystal potential.

mph effective mass of a cavity photon in a periodic crystal potential.

mhh effective mass of a heavy hole in a periodic crystal potential.

Q factor quality factor, a measure for the losses of the dielectric mirrors; the

average lifetime of a cavity photon is proportional to the Q factor

of the cavity; typical values lie in the range of 104 to 105 [111].

r radial coordinate in the transverse plane; r2 = x2 + y2; intro-

duced in Sec. 4.2.3 and used to simplify calculations using the

Newton-Raphson method applied to cylindrically symmetric two-

dimensional problems.

r reflection coefficient of the dielectric Bragg mirror; used in Subsec.

2.1.1.

Se
z projection of the electron spin on the z axis.

Sh
z projection of the spin of a hole on the z axis.

T1 time constant related to the population decay of the electron-hole

pairs; in the range of 1ns.

T2 time constant elated to the damping due to dephasing processes of

the exciton wave function; in the range of 1ps.

U(t) electromagnetic energy stored in the cavity.

v velocity of a moving pattern.

VXX,asym(k) effective interaction potential determined by the Coulomb interac-

tion between two excitons in singlet configuration.

VXX,sym(k) effective interaction potential determined by the Coulomb interac-

tion between two excitons in triplet configuration.
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VXX(k) effective interaction potential determined by the Coulomb interac-

tion between two excitons.

amplitude domain domain formed between two nonequivalent states.

Bloch wall moving domain wall.

BM Bragg mirror, a one-dimensional photonic crystal operating as a

dielectric mirror.

bright soliton nondiffracting localized intensity peak above a HS background.

dark soliton nondiffracting localized intensity dip below a HS background.

EOM equations of motion.

FFT Fast Fourier transform.

GaAs gallium arsenide, a III-V semiconductor with direct bandgap.

Hopf bifurcation a local bifurcation characterized by a fixed point of a dynamical

system losing its stability to a pair of complex conjugate solutions

in linear stability analysis.

HS homogeneous solution, a solution of the EOM that is independent

on time and the transverse coordinates.

InGaAs indium gallium arsenide, an alloy of gallium arsenide and indium

arsenide.

Ising wall stationary domain wall.

JCH Jaynes-Cummings Hamiltonian modelling the interaction between

a two-level system and cavity photons.

Kerr cavity weakly coupled microcavity with a third-order nonlinearity; a pro-

totypical example is given by the Lugiato-Lefever model [72].

Lugiato-Lefever model prototypical model of an optical cavity with losses, pump, and

Kerr nonlinearity.

MI modulation instability; instability of a solution with respect to

spatially periodic perturbations.
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MWP Maxwell point; pump power where lower and upper branch of the

bistability loop can be linked by a stationary wall.

NIB nonequilibrium Ising-Bloch transition; a transition from a stationary

to a moving domain wall at a bifurcation point.

NLSE nonlinear Schrödinger equation; a version of the Schrödinger equa-

tion with additional Kerr nonlinearity.

PDE partial differential euqation.

phase domain domain formed between two equivalent states.

QW semiconductor quantum well.

symmetric solution solution of the vectorial EOM with ρE(x, y) ≡ 0.

TE-TM splitting splitting between the dispersion relations of transverse electrically

(TE) and transverse magnetically (TM) polarized cavity modes.

Turing instability synonym to modulation instability.

VCSEL vertical-cavity surface-emitting laser, a type of laser whose setup is

also used in the semiconductor microcavities studied in this work.

vectorial soliton elliptically polarized soliton.

127



List of Figures

2.1 Scheme of a semiconductor microcavity. . . . . . . . . . . . . . . . . . . . 12

2.2 Rabi splitting and strong coupling. . . . . . . . . . . . . . . . . . . . . . 16

3.1 Geometry of TE-TM splitting . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Linear dispersion relation. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 TE-TM splitting of the linear dispersion relation. . . . . . . . . . . . . . 38

5.3 Multistability of HSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Modulation instability of the vectorial equations of motion for α = 0.1. . 44

5.5 Modulation instability of the scalar equations of motion. . . . . . . . . . 45

5.6 Modulation instability of the vectorial equations of motion for α = −0.1. 46

5.7 Critical intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Growth rate with TE-TM splitting. . . . . . . . . . . . . . . . . . . . . . 49

6.1 Hexagonal patterns in bistability domain. . . . . . . . . . . . . . . . . . . 54

6.2 Transformation of pattern shape I. . . . . . . . . . . . . . . . . . . . . . 56

6.3 Transformation of pattern shape II. . . . . . . . . . . . . . . . . . . . . . 56

6.4 Transformation of pattern shape III. . . . . . . . . . . . . . . . . . . . . 57

6.5 Transformation of pattern shape IV. . . . . . . . . . . . . . . . . . . . . 57

6.6 Transformation of pattern shape V. . . . . . . . . . . . . . . . . . . . . . 58

6.7 Transformation of pattern shape: conclusion. . . . . . . . . . . . . . . . . 58

6.8 Polariton patterns above the excitonic resonance I. . . . . . . . . . . . . 60

6.9 Polariton patterns above the excitonic resonance II. . . . . . . . . . . . . 60

6.10 Polariton patterns above the excitonic resonance III. . . . . . . . . . . . 61

6.11 Symmetric intensity patterns for α = 0.1. . . . . . . . . . . . . . . . . . . 63

6.12 Vectorial hexagonal patterns after symmetry breaking. . . . . . . . . . . 64

6.13 Modulated stripe patterns after symmetry breaking. . . . . . . . . . . . . 65

6.14 Transformation of vectorial patterns. . . . . . . . . . . . . . . . . . . . . 66

6.15 Buildup of a domain structure. . . . . . . . . . . . . . . . . . . . . . . . 67

6.16 Movement of the built-up domain structure. . . . . . . . . . . . . . . . . 68

6.17 Moving hexagonal patterns for β = 0.05. . . . . . . . . . . . . . . . . . . 70

6.18 Drift velocity of moving hexagonal patterns. . . . . . . . . . . . . . . . . 73

128



7.1 Symmetric dark solitons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Branches and profiles of two-dimensional vectorial dark solitons. . . . . . 82

7.3 Decay of a symmetric dark soliton for α = −0.1 I. . . . . . . . . . . . . . 84

7.4 Decay of a symmetric dark soliton for α = −0.1 II. . . . . . . . . . . . . 85

7.5 Spatial splitting of a symmetric dark soliton for α = −0.05. . . . . . . . . 86

7.6 Merging of two vector solitons. . . . . . . . . . . . . . . . . . . . . . . . . 87

7.7 1D dark vector soliton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.1 Moving domain walls for α = 0.1. . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Moving domain walls for α = −0.1. . . . . . . . . . . . . . . . . . . . . . 93

8.3 Nonequilibrium Ising-Bloch transition. . . . . . . . . . . . . . . . . . . . 94

129





List of Publications

Peer-reviewed journals

1. A. Werner, O. A. Egorov, and F. Lederer, Spin dynamics of dark polariton solitons,

Phys. Rev. B 85, 115315 (2012).

2. O. A. Egorov, A. Werner, T. C. H. Liew, E. A. Ostrovskaya, and F. Lederer, Motion

of patterns in polariton quantum fluids with spin-orbit interaction, Phys. Rev. B

89, 235302 (2014).

3. A. Werner, O. A. Egorov, and F. Lederer, Exciton-polariton patterns in coherently

pumped semiconductor microcavities, Phys. Rev. B 89, 245307 (2014).

4. A. Werner, O. A. Egorov, and F. Lederer, Pseudospin dynamics of exciton-polariton

patterns in a coherently driven semiconductor microcavity, Phys. Rev. B 90, 165308

(2014).

International conference contributions

1. A. Werner, O. A. Egorov, and F. Lederer, Vector polariton solitons in semiconductor

microcavities, DoKDoK Naumburg (2011).

2. A. Werner, A. Eichhorn, and H. Gies, Ghost-curvature couplings in Quantum

Einstein Gravity, Cold Quantum Coffee Heidelberg (2011).

3. A. Werner, O. A. Egorov, and F. Lederer, Interaction of dark vector polariton

solitons, Nonlinear Photonics, Colorado Springs (2012).

4. A. Werner, O. A. Egorov, and F. Lederer, Spontaneous symmetry breaking of cavity

polariton solitons due to pseudospin dynamics, CLEO Quantum Electronics and

Laser Science Conference, San Jose, California (2012).

5. A. Werner, O. A. Egorov, and F. Lederer, Polariton spin dynamics in a semicon-

ductor microcavity, 518. WE-Heraeus-Seminar on Quantum-Optical Analogies: a

Bridge Between Classical and Quantum Physics, Bad Honnef (2012).

6. A. Werner, O. A. Egorov, and F. Lederer, Spin-induced spontaneous symmetry

breaking of exciton-polariton patterns, CLEO Europe, München (2013).





Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig, ohne unzu-

lässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und

Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen

Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit

nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs-

bzw. Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genom-

men. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form

einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir be-

kannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und

nichts verschwiegen habe.

Jena, 26. November 2015

Albrecht Werner


